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ARTICLE INFO ABSTRACT

Available online 24 September 2009 Evolutionary algorithms (EAs) are useful tools in design optimization. Due to their simplicity, ease of
Keywords: use, and suitability for multi-objective design optimization problems, EAs have been applied to design
Multi-objective design optimization optimization problems from various areas. In this paper we review the recent progress in design
Evolutionary algorithms optimization using evolutionary algorithms to solve real-world aerodynamic problems. Examples are
Surrogate model given in the design of turbo pump, compressor, and micro-air vehicles. The paper covers the following
Robust and reliability-based design topics that are deemed important to solve a large optimization problem from a practical viewpoint: (1)
Data mining hybridized approaches to speed up the convergence rate of EAs; (2) the use of surrogate model to reduce

NASA rotor 67 blade the computational cost stemmed from EAs; (3) reliability based design optimization using EAs; and (4)

data mining of Pareto-optimal solutions.
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1. Brief introduction of evolutionary algorithms
1.1. Evolutionary algorithms

Evolutionary algorithms (EAs) mimic mechanics of natural
selection and natural genetics, in which a biological population
evolves over generations to adapt to an environment by selection,
crossover, and random mutation. Likewise, EAs start with a
random population of candidates (chromosomes), for each of
them both the objective and constraint functions are evaluated.
Based on the objective function value and constraint violations a
metric (fitness) is defined and assigned to each candidate. In
general, penalty is put on infeasible candidates so that all
infeasible solutions have a worse fitness than feasible solutions.
Typically EAs involve three operators, selection, crossover, and
mutation. The primary purpose of selection operator is to make
duplicates of good candidates and eliminate bad candidates in a
population while often keeping population size constant [16].
Tournament selection, proportionate selection, and ranking
selection are common methods to achieve the task. For single-
objective optimization problems, the ranking is based on the
fitness of a candidate. For multi-objective optimization problems,
the ranking can be based on Fonseca’s non-dominated ranking
method in which an individual’s rank is equal to the number of
individuals in the present generation who are better than the
corresponding individual in all the objective functions [23]. After
ranking, the N best candidates, same size as the initial population,
are chosen from both the current and previous generations and
then placed in the mating pool. The elitist strategy [17] is often
chosen to ensure a monotonic improvement for the EA, in which
some of the best individuals are copied directly into the next
generation without applying any evolutionary operators. The
ranking selection method assigns selection probability ps based on
an individual’s rank instead of its fitness value. The selection
probability function is defined as

ps=c(1 — o)k, 1)

where c<1 is a user-defined parameter. That is, the selection
probability is reduced by a factor of (1 —c) each time when
the rank is increase by 1. Then, a pair of parents are selected by
using either stochastic universal sampling or roulette-wheel section,
with which same candidate can be selected more than once to
become a parent. As a consequence, the selection operator ensures
that good candidates are preserved at the cost of bad candidates.

A crossover operator is applied next to create offsprings. For
example, using the blend crossover (BLX—o) operator, two parent
candidates, Parent 1 and Parent 2, will have two offspring as follows:

Child 1 =y Parent 1+ (1 — ) Parent 2, 2)
Child 2 = (1 — y) Parent 1+ Parent 2, 3)
where

y=0+20)u — (4)

u is a uniform random number in the range of [0 1]. The value of
a=0.5 is usually chosen because it can maintain a good balance

between two conflicting goals of a crossover operator: exploiting good
solutions and exploring the search space [9].

The mutation operator is used to maintain the population
diversity. For real-coded EA a uniform random number is added to
each design variable at a probability of pn,. If X; represents such a
design variable, then the corresponding variable of the new
offspring after mutation has the following form:

XMW = x,[1+(r; — 0.5)A], ©

where X" is the design variable after mutation, r; is a random
number ranging [0 1], A; is the user-defined maximum perturba-
tion allowed in the i-th decision variable. We set the mutation
probability p, =0.1 and mutation amplitude A;=0.1 in our
computations.

EAs have been successfully applied to aerodynamic design
optimization problems because of their ease of use, broad applic-
ability, and global perspective. For example, Oyama et al. applied an
EA in their redesign of the NASA Rotor67 transonic compressor blade
[64]. Benini implemented an EA to improve the performance of the
NASA rotor37 blade [7]. Oyama and Liou [63] and Lian et al. [44,47]
utilized EAs to the redesign of rocket turbo pumps. Another thrust
behind these broad applications is that EAs are particularly suitable
for multi-objective optimization problems, which are often encoun-
tered in aerospace designs. For example, in the turbo pump design
problems, the objectives are to maximize the total head rise and to
minimize the input power [63,44,47]. These two objectives are
competing: improving one objective will inevitably deteriorate the
other. Unlike a single objective optimization problem, a multi-
objective optimization problem does not have such an optimal
solution that is better than others in terms of all objectives. Instead,
one expects a set of compromised solutions, each of which is better
than the others in one objective but is worse in the other objectives.
These solutions are largely known as the non-dominated solutions or
Pareto-optimal solutions. When dealing with multi-objective optimi-
zation problems, classical methods, such as the gradient-based
methods, usually convert a multi-objective problem into multiple
single-objective problems by introducing parameters such as weight
vectors [16]. In this approach, each optimal solution is associated with
a particular vector. To find another Pareto-optimal solutions, one has
to choose a different weight vector and solve the resulting single-
objective optimization problem repeatedly. On the other hand, EA’s
population approach can be exploited to emphasize all non-
dominated solutions in a population equally and to preserve a diverse
set of multiple non-dominated solutions using a niche-preserving
operator [16]. As a consequence, EAs eliminate the need of choosing
different parameters and can find as many Pareto-optimal solutions as
possible in one run.

2. Optimization using hybridized EAs

EAs are powerful tools in optimization. However, EAs suffer a
slow convergence because they do not use gradient information.
The required population size and generation size usually demand
tremendous amount of computing resources. For instance, Benini
redesigned the NASA rotor37 with an EA, with a population size of
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