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Abstract In this paper, Lie point symmetry method is used to obtain the general exact solution
of the second order nonlinear ordinary differential equation which governing heat transfer in
rectangular fin with variable thermal conductivity. Some new forms of thermal conductivity are
introduced and the associated exact solution is obtained in each case. The general relation among
the fin efficiency, thermal conductivity and thermo-geometric parameter is obtained.
& 2016 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.
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1. Introduction

A fin is a surface that extends from an object to increase
the rate of heat transfer to or from the environment by
increasing convection. Fins are most commonly used in
heat exchanging devices such as radiators in cars, and heat
exchangers in power plants. They are also used in newer
technology such as hydrogen fuel cells.

The fin equation which is controlled the heat transfer of
finis given by [1–19]

Ac
d

dX K Tð Þ dT
dX

� �
�PhðTÞ T�Tað Þ ¼ 0; ð1Þ

where Ac is the cross-sectional area of the fin, X is the axial
distance measured from the fin tip, kðTÞ is the thermal
conductivity of the fin, T is the fin temperature, P is the fin
perimeter, hðTÞ is the heat transfer coefficient and Ta is the
ambient temperature.

Eq. (1) is obtained through some assumptions such as
steady state operation with no heat generation, the fin tip is
insulated, and one dimensional heat transfer.

The heat transfer coefficient h Tð Þ is given by [20]

h Tð Þ ¼ hb
T�Ta

Tb�Ta

� �n

;
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where hb is the heat transfer coefficient at the base of
temperature, Tb is the temperature of the heat source which
relate fin, the constant n indicates the mode of heat transfer.
After taking the previous assumption into account,

Eq. (1) becomes

Ac
d

dX K Tð Þ dT
dX

� �
�Phb

T�Tað Þnþ1

Tb�Tað Þn ¼ 0: ð2Þ

Eq. (2) can be made non dimensional by the set of the
transformations [1–19]

θ¼ T�Ta

Tb�Ta
; x¼ X

L
;M2 ¼ PhbL2

KaAc
; k¼ K

Ka
; ð3Þ

where L is a fin length and Ka is the thermal conductivity of
the fin at the ambient temperature Ta.
Substituting Eq. (3) into Eq. (2), we obtain [17]

d

dx
k θð Þ dθ

dx

� �
�M2θnþ1 ¼ 0: ð4Þ

The boundary conditions are given by [1–19]

1. At the fin tip X ¼ 0ð Þ; because of the fin is insulated, the
change of temperature is

dT

dX ¼ 0; ð5Þ

From Eq. (3), Eq. (5) becomes

dθ

dx
¼ 0 or θ ̇ 0ð Þ ¼ 0:

2. At the fin base X ¼ b¼ Lð Þ; fin temperature is the same
temperature as the heat source Tb

T bð Þ ¼ Tb; ð6Þ
From Eq. (3), Eq. (6) becomes

θ 1ð Þ ¼ 1:

Here, the boundary conditions are

θ 1ð Þ ¼ 1; θ ̇ 0ð Þ ¼ 0; ð7Þ
where, ̇ ¼ d

dx
Eq. (4) has been solved in many papers with different

forms of the thermal conductivity k θð Þ using approximation
methods.
When k θð Þ ¼ 1, series solutions of Eq. (4) are investi-

gated using homotopy asymptotic method in Ref. [1] and by
Adomian decomposition method in Ref. [2]. Exact analy-
tical solution of Eq. (4) is obtained in Ref. [3] when
k θð Þ ¼ 1.
When k θð Þ ¼ 1þ εθð Þ, Approximate solutions of Eq. (4)

are investigated using homotopy analysis method in Ref.
[4], by asymptotic analysis method in Ref. [5], by decom-
position and evolutionary methods in Ref. [6] and for a
special case when n¼ 0, series solutions of Eq. (4) are
investigated using Adomian decomposition method in Refs.
[7,8], by homotopy analysis method in Refs. [9–11], by
homotopy perturbation method in Ref. [12], by modified

decomposition method in Ref. [13], by variational iteration
method in Ref. [14] and by differential transformation
method in Refs. [15,21].

When k θð Þ ¼ θβ, Approximate solutions of Eq. (4) are
investigated using differential transform method in Ref.
[16]. Exact analytical solution of Eq. (4) when β¼ n is
obtained in Ref. [17] but in the case βan the general
solution of Eq. (4) was not obtained. In the case of steady
state, exact analytical solution of Eq. (4) when n¼ β¼ � 4

3
is obtained in Ref. [18].

In this paper, we will obtain the general exact solution of
Eq. (4) for general function of thermal conductivity kðθÞ
using Lie point symmetry and the general relation of fin
efficiency with the thermal conductivity and the thermo-
geometric parameter M:

The following sections will be organized as follows: in
Section 2, Lie point symmetry method will be used to
obtain the general solution of Eq. (4). Also, the general
relation among the temperature at the fin tip, the tempera-
ture gradient at the fin base, the mode of heat transfer n, the
fin parameter M and the thermal conductivity at the fin base
will be obtained. In Section 3, new cases of thermal
conductivity are shown and the associated exact solution
is obtained in each case. Also, the relation between the
temperature gradient at fin base and the temperature at fin
tip at these cases of thermal conductivity is discussed. In
Section 4, we will study the fin efficiency.

2. Lie point symmetry method

It is known that the autonomous ODE Eq. (4) admits the
Lie point symmetry generator [22,23]

X ¼ ∂
∂x

: ð8Þ

The canonical coordinates r; vðrÞð Þ associated with Eq.
(8) are given by

r ¼ θ; v¼ x; ð9Þ
which prolong to

dθ

dx
¼ 1

v0
;

d2θ

dx2
¼ � v

00

v0ð Þ3 : ð10Þ

Hence, Eq. (4) reduces to

�M2θ1þn þ k0 θð Þ 1
v0

� �2

�k θð Þ v
00

v03 ¼ 0: ð11Þ

Let,

v0 ¼ 1
u
: ð12Þ

Substituting Eq. (12) into Eq. (11), we obtain

�M2θ1þn þ k0ðθÞu2 þ kðθÞuu0 ¼ 0; ð13Þ
where, 0 ¼ d

dθ :

Abass H. Abdel Kader et al.64



Download English Version:

https://daneshyari.com/en/article/1719610

Download Persian Version:

https://daneshyari.com/article/1719610

Daneshyari.com

https://daneshyari.com/en/article/1719610
https://daneshyari.com/article/1719610
https://daneshyari.com

