

ORGINAL ARTICLE

Optimization of gas turbines for sustainable turbojet propulsion

http://ppr.buaa.edu.cn/

Propulsion and Power Research

www.sciencedirect.com

Propulsion and

Power Research

Yousef S.H. Najjar*, Ibrahim A.I. Balawneh

Mechanical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan

Received 17 March 2014; accepted 14 January 2015 Available online 25 June 2015

KEYWORDS

Optimization; Green technology; Sustainable turbojet engines; Performance carpets **Abstract** Gas-turbines are widely used to power aero planes because they are light, compact with a high power-to-weight ratio. In the turbo jet engine, the main operating variables are: compressor pressure ratio r_p and turbine inlet temperature (*TIT*). These variables affect the specific thrust and specific fuel consumption (*SFC*), which represent the main performance parameters. In addition to the analytical work, a computer program of the General Algebraic Modeling System (GAMS) was used for analysis and optimization. The analysis shows that the specific thrust strongly depends on turbine inlet temperature (*TIT*), where a 10% decrease in *TIT* results in 6.7% decrease in specific thrust and 6.8% decrease in *SFC*. Furthermore, the value of optimum pressure ratio r_f for maximum specific thrust increases with *TIT*. A 10% decrease from design *TIT* results in 11.43% decrease in r_f . The value of optimum pressure ratio for the turbojet engine operating at Ma = 0.8 and altitude Alt = 13000 m, and TIT = 1700 K was found to be 14. © 2015 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Energy efficiency could be obtained by different methods, among which is waste-heat recovery [1], combined cycles [2], using energy storage for peak shaving and load leveling [3] and in the limit widening the range of fuel specifications to improve thermo economics [4]. With turbojet engines, air as the working fluid is used to produce thrust based on the variation of kinetic energy of burnt gases after combustion [5,6]. Performance typically focuses on use of cycle efficiency, specific thrust, and specific fuel consumption [7,8].

Early studies handled the model of the turbojet to evaluate performance parameters [9]. Further investigations were carried out using variable cycles of turbojet engine at supersonic speeds [10]. In the last few years many papers presented thermodynamic and aerodynamic analyses of the behavior of a turbojet operating with and without afterburners [11].

^{*}Corresponding author. Tel.: +00962 785793463.

E-mail address: ysnajjar@just.edu.jo (Yousef S.H. Najjar).

Peer review under responsibility of National Laboratory for Aeronautics and Astronautics, China.

²²¹²⁻⁵⁴⁰X © 2015 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1	1	5

Nomenclature		T_x TIT	temperature at some point x (unit: K) turbine inlet temperature (unit: K)	
Α	area (unit: m ²)	W_{c}	compressor work (unit: kJ/kg)	
а	speed of sound (unit: m/s)	W_{tc}	turbine work needed for driving the compressor	
Alt	altitude (unit: m)		(unit: kJ/kg)	
C_a	inlet air velocity (unit: m/s)			
C_5	exit air velocity (unit: m/s)	Greek letters		
C_p	constant pressure specific heat (unit: kJ/(kg•K))			
F	thrust (unit: N)	γ	ration of specific heats	
F_s	specific thrust (unit: (N•s)/kg)	η	isentropic efficiency	
f_{ac}	actual fuel air ratio	ρ	fluid's density (unit: kg/m ³)	
f_{th}	theoretical fuel air ratio	1		
H_{ν}	heating value (unit: kJ/kg)	Subscripts		
h	enthalpy (unit: kJ/kg)	Subse		
Ма	Mach number	а	air	
т	mass flow rate (unit: kg/s)	u C	compressor	
ORL	optimum running line	с	combustion chamber	
Р	pressure (unit: bar)	d	diffuser	
P_x	pressure at some point x (unit: bar)		gas	
R	ideal gas constant (unit: J/(kg•K))	g i	nozzle	
r_f	optimum compressor pressure ratio	J m	mechanical	
r_p	compressor pressure ratio	pr	propulsive	
SFC	specific fuel consumption (unit: kg/(N•s))	t pr	turbine	
Т	temperature (unit: K)	ı	turome	

Theoretical and practical engineering developments were necessary for the design, building and testing of an engine with an afterburner [12]. Other research works studied the effects compressor pressure ratio on thrust and other performance parameters [13]. In military applications there were special studies on the factors which determine the proper choice of engine cycle for a combat aircraft to suit the requirements of the designed mission [14]. Some researchers used energy and exergy analyses with a turbojet engine over flight altitudes ranging from sea level to 15000 m to determine the relative effects of operating variables [15].

The main objective of this work is carrying out energy analysis for the different components of the turbo jet engine [16]. Consequently, optimum performance including maximum specific thrust and minimum specific fuel consumption are obtained [17]. This will be done through an analytical method using Excel and a specified software using the language of the

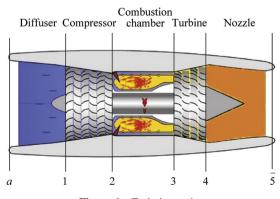


Figure 1 Turbojet engine.

General Algebraic Modeling System (GAMS) for comparison [18,19].

2. Theoretical analysis

A schematic diagram of the turbojet engine and the relevant *T*-*s* diagram are shown in Figures 1 and 2.

2.1. Overall performance

The heating value of the fuel is: $H_v = 43100 \text{ kJ/kg}$. The thrust of turbojet engine is produced from summation of momentum and pressure components:

$$F = m(C_5 - C_a) + A_5(P_5 - P_a)$$
(1)

To get the specific thrust (F_s) , divide Eq. (1) by mass flow

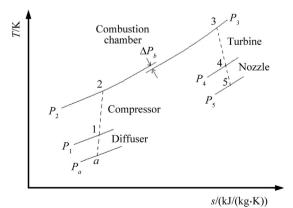


Figure 2 T-s diagram.

Download English Version:

https://daneshyari.com/en/article/1719627

Download Persian Version:

https://daneshyari.com/article/1719627

Daneshyari.com