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Abstract In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity
(SSV) method, is introduced to solve the water hammer equations. Compared with standard
spectral method, the method's advantage essentially consists in adding a super spectral
viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize
the numerical oscillation (Gibbs phenomenon) and improve the computational efficiency while
discontinuities appear in the solution. Results obtained from the Chebyshev super spectral
viscosity method exhibit greater consistency with conventional water hammer calculations. It
shows that this new numerical method offers an alternative way to investigate the behavior of
the water hammer in propellant pipelines.
& 2013 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.

All rights reserved.

1. Introduction

Transients flow, also known as water hammer, is produced
by a rapid change of flow velocity in the propellant pipelines
that may be caused by sudden open or closure of valves, start or

shutdown of pumps, rapid changes in demand condition, etc.
This phenomenon may invalidate pipeline sealing and cause
propellant leakage and even engine power loss. It is important
to study both the water hammer phenomenon and the pressure
transient discipline in order to reduce the effect of water
hammer pressure and to design a reliable liquid rocket engine
and more reasonable propellant system.

Transients flow in pipelines is formulated by a set of
nonlinear, hyperbolic partial differential equations (PDE)
formed by one-dimensional continuity and momentum equa-
tions. The equations can seldomly be solved analytically.
Various numerical methods have been introduced for pipeline
transient calculation. They include the method of character-
istics (MOC) [1–3], finite difference (FD) [4,5], finite volume
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(FV) [6,7], and finite element (FE) [8,9]. Among these
methods, MOC is proven to be the most popular one because
of its numerical simplicity and computational efficiency.
Unfortunately, the MOC approach becomes problematic when
it is applied to complex systems or systems with varying
parameters such as wave speed, material properties and
multiples phase flow for the reason that the Courant number
is not equal to unity. For these systems, MOC requires to use
interpolation schemes or wave speeds/geometric adjustments.
However, this would bring dispersion errors to the solutions.
To numerically solve water hammer partial differential

equations, we need to compute the spatial derivatives first.
Yet using the FD, FV or FE methods to compute them
would typically require a large number of nodal points in
order to yield satisfactory results. As the promising alter-
natives, the spectral and pseudo-spectral methods have been
extensively used in recent years. The spectral methods
differ from the FD, FV and FE methods in which global
information is incorporated into the computing of a spatial
derivative. The spectral methods can yield a smooth
solution of greater accuracy with far fewer nodes and
therefore less computational time than the FD, FV and FE
methods. A wide variety of spectral schemes applied to
fluid dynamics have been reviewed by Bashid et al. [10],
Canuto et al. [11], Peyret [12], and Chen et al. [13].
It is well known that using spectral methods for nonlinear

conservation laws would result in the occurrence of the
Gibbs phenomenon once spontaneous shock discontinuities
appear in the solution [14]. These spurious oscillations
would in turn lead to loss of resolution and render the
standard spectral approximations unstable. In this paper, we
use the Chebyshev super spectral viscosity (SSV) method

[15,16] to solve the water hammer equations. This method's
specialty essentially consists in adding a spectral viscosity
to the equations for the high wave numbers of numerical
solution. This super spectral viscosity is sufficient to
stabilize the numerical scheme when it is small enough to
retain spectral accuracy. The numerical test, water hammer
problem in a simple pipeline system, is considered. The
numerical results were compared with the conventional
water hammer calculations to demonstrate the accuracy of
the method.

2. Mathematical formulation

2.1. Governing equations

For one-dimensional transient flow, based on the
Newton's Second Law and the mass conservation principle,
the basic control equations of transient flow which include
the momentum conservation equation and continuity equa-
tion can be finally deduced and expressed as two partial
differential equations [1].
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where, x is the space coordinate, t is the time, v is the
velocity in pipe, p is the pressure, f is the Darcy–Weisbach
friction factor, D is the inner diameter of pipe, ρ is the
density of fluid, g is the acceleration of gravity, L is the
pipeline length, and a is the wave speeds. The wave speeds

Nomenclature

a wave speed (unit: m/s)
ci coefficients to evaluate the first derivate matrix D(1)

dik coefficients of matrix D(1)

D(1) inner diameter of pipe (unit: m)
e thickness of the pipe
E Young's modulus of elasticity of the pipe (unit: Pa)
f Darcy–Weisbach friction factor
g acceleration of gravity (unit: m/s2)
hi(x) Lagrange polynomials
K bulk modulus of elasticity of the fluid (unit: Pa)
L pipeline length (unit: m)
N number of polynomials or collocation points in x
p pressure (unit: Pa)
p0 initial pressure in pipe (unit: Pa)
s viscosity order
t time (unit: s)
u(x,t) unknown function
u vector of u(x,t) evaluated at the collocation points
u(n) vector of n order spatial derivative of u(x,t) at the

collocation points
ûk(t) time dependent expansion spectral coefficients
v velocity (unit: m/s)

V non-dimensional velocity
x non-dimensional space coordinate
xi Chebyshev-Gauss-Lobatto points
x space coordinate (unit: m)
Tk(x) Chebyshev polynomials of order k

Greek letters

δik Kronecker delta operator
ε viscosity amplitude
ϕk(x) basis functions
η coefficient
φ non-dimensional pressure
ρ density of fluid (unit: kg/m3)
τ non-dimensional time
η coefficient

Subscripts

(n) indicates n order derivative with respect to x
i,k relative to the number of polynomials or

collocation points
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