

ORIGINAL ARTICLE

Theoretical modelling of hot gas ingestion through turbine rim seals

J. Michael Owen

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Received 13 January 2012; accepted 11 September 2012 Available online 20 December 2012

KEYWORDS

Gas turbine; Rim seal; Hot gas ingestion; Orifice models; Rotationally-induced ingress; Externally-induced ingress **Abstract** The rim seals of gas turbines are used to prevent or reduce the ingestion of hot mainstream gas into the wheel-space between the turbine rotor and its adjacent stationary casing. The ingestion is caused by local pressure differences between the mainstream and the wheel-space; ingress usually occurs where the mainstream pressure is higher than that in the wheel-space and egress occurs where it is lower. Sealing air, which is supplied to the wheel-space, flows through the seal clearance and joins the mainstream flow. Too much sealing air is inefficient; too little can lead to disastrous consequences. The nozzle guide vanes create three-dimensional (3D) variations in the distribution of pressure in the mainstream annulus and the turbine blades create unsteady effects. Computational fluid dynamics (CFD) is both time-consuming and expensive for these 3D unsteady flows, and engine designers tend to use correlations or simple models to predict ingress. This paper describes the application of simple 'orifice models', the analytical solutions of which can be used to calculate the sealing effectiveness of turbine rim seals. The solutions agree well with available data for externally-induced ingress, where the effects of rotation are negligible, for rotationally-induced ingress, where the effects of the external flow are small, and for combined ingress, where the effects of both external flow and rotation are significant.

© 2012 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V. All rights reserved.

E-mail address: ensjmo@bath.ac.uk

Peer review under responsibility of National Laboratory for Aeronautics and Astronautics, China.

Production and hosting by Elsevier

1. Introduction

Figure 1 illustrates a typical high-pressure gas-turbine stage showing the rim seal and the wheel-space between the stator and the rotating turbine disc. Sealing air is

2212-540X © 2012 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jppr.2012.10.002

Nomenclature

A	constant for variable $C_{d,e}$	
A_{c}	seal-clearance area	
A_{e}, A_{i}	areas for egress and ingress in seal clearance	
b	radius of seal	
C_{de}, C_{d}	<i>i</i> discharge coefficients for egress and ingress	
C_n	pressure coefficient $(C_p = (p_2 - p_1)/(1/2)\rho\Omega^2 b^2)$	
C_{nmax}	nondimensional pressure difference	
p,max	$(C_{p,max} = \Delta p / (1/2) \rho W^2)$	
C_w	nondimensional flow rate $(C_w = \dot{m}/\mu b)$	
$C_{w,min}$	minimum value of $C_{w,0}$ to prevent ingress	
$C_{w,0}$	nondimensional sealing flow rate	
C_{β_1}	modified internal swirl ratio	
	$(C_{\beta_1} = \beta_1^2 / (1 - r_1^2 / r_2^2))$	
G_c	seal-clearance ratio $(G_c = s_c/b)$	
Κ	constant in EI asymptote	
'n	mass flow rate	
р	absolute static pressure	
P_{max}	nondimensional pressure parameter	
	$(P_{max} = (1/2)C_{p,max} Re_w^2)$	
r	radius	
Re_w	axial Reynolds number in annulus $(Re_w = \rho Wb/\mu)$	
Re_{ϕ}	rotational Reynolds number $(Re_{\phi} = \rho \Omega b^2 / \mu)$	
S_c	seal clearance	
U	bulk-average velocity through seal clearance	
V_r, V_ϕ	radial, tangential components of velocity	
W	axial velocity in external annulus	
β_1	swirl ratio in wheel-space $(\beta_1 = V_{\phi_1}/\Omega b)$	
Γ_c	ratio of discharge coefficients ($\Gamma_c = C_{d,i}/C_{d,e}$)	

supplied to the wheel-space, and it leaves through the clearances in the rim seal.

Figure 2 shows the view looking radially inward into the space between the stationary vanes and rotating blades in the annulus of an experimental rig. The figure, which was adapted from the paper of Zhou et al. [1], shows that the flow past the vanes and blades creates a three-dimensional (3D) variation of pressure radially outward of the rim seal. Ingress and egress occur through those parts of the seal clearance where the

Nozzle guide vane

external pressure is instantaneously higher and lower, respectively, than that in the wheel-space; this nonaxisymmetric type of ingestion is referred to here as externally-induced (EI) ingress. Although the sealing air can reduce ingress, too much air reduces the engine efficiency and too little can cause serious overheating, resulting in damage to the turbine rim and blade roots.

ratio of driving forces for EI and RI ingress

Even when the external flow is axisymmetric, so that there is no circumferential variation of external pressure,

Figure 1 Typical high-pressure turbine stage showing rim seal and wheel-space.

Figure 2 Computed pressure contours between vanes and blades of experimental rig (adapted from Zhou et al. [1]).

		$(\Gamma_{\Delta p} = \Delta C_p / C_{\beta_1})$
ble $C_{d,e}$	ΔC_p	external pressure coefficient
a		$(\Delta C_p = \Delta p / (1/2) \rho \Omega^2 b^2)$
nd ingress in seal clearance	Δp	peak-to-trough pressure difference in annulus
C	3	sealing effectiveness ($\varepsilon = 1 - \Phi_i / \Phi_e$)
ents for egress and ingress	θ	angular coordinate between vanes
at $(C_p = (p_2 - p_1)/(1/2)\rho\Omega^2 b^2)$	μ	dynamic viscosity
ressure difference	ρ	density
ρW^2	Φ	flow parameter ($\Phi = C_w/2\pi G_c Re = U/\Omega b$)
ow rate $(C_w = \dot{m}/\mu b)$	Φ_e	value of Φ when $C_w = C_{w,e}$
f C_{w0} to prevent ingress	Φ_i	value of Φ when $C_w = C_{w,i}$
ealing flow rate	Φ_{min}	value of Φ_o when $C_{w,0} = C_{w,min}$
swirl ratio	Φ_o	value of Φ when $C_w = C_{w,0}$
$(2^{2}))$	η_t	flow parameter for RI ingress
$o(G_c = s_c/b)$	Ω	angular velocity of rotating disc
ymptote		
-	Subsci	ripts
essure		1
ressure parameter	CI	combined ingress
$ax Re_w^2$)	e	egress
	EI	externally-induced ingress
mber in annulus ($Re_w = \rho Wb/\mu$)	i	ingress
ds number ($Re_{\phi} = \rho \Omega b^2 / \mu$)	max	maximum
	min	minimum
city through seal clearance	0	superposed flow
components of velocity	RI	rotationally-induced ingress
xternal annulus	1,2	locations in wheel-space and annulus
el-space ($\beta_1 = V_{\phi_1}/\Omega b$)	*	value when $\Phi_{\rho} = 0$
coefficients $(\Gamma - C \cdot / C \cdot)$		

 $\Gamma_{\Delta p}$

Download English Version:

https://daneshyari.com/en/article/1719699

Download Persian Version:

https://daneshyari.com/article/1719699

Daneshyari.com