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a  b  s  t  r  a  c  t

Up  until  the  point  at which  ocean  waves  break,  their dynamics  are  generally  assumed  to  be  accurately
modelled  by  potential  flow  theory.  For  practical  and  computational  reasons  it is often  useful  to  approxi-
mate  the  full  potential  flow solution  with  bandwidth  and  amplitude  limited  equations.  A approximation
used  for  waves  on deep  water  is the  Broad-banded  Modified  Non-linear  Schrödinger  equation  (also  known
as the modified  Dysthe  equation).  In this  paper we  compare  this  approximate  model  with  potential
flow  simulations  of  focussing  uni-directional  wave-groups.  We  find  that  for moderate  non-linearity  the
approximate  model  predicts  very  similar  changes  to  the  potential  flow  model.  However,  one  of  the  dom-
inant  non-linear  changes  to  the  wave-group  is  a  localised  increase  in  the  bandwidth  and  contraction  in
physical  length,  and  beyond  a certain  point  the approximate  model  fails  to accurately  reproduce  this
causing  other  elements,  such  as the maximum  wave  amplitude,  to be poorly  modelled.  This  modelling
inaccuracy  occurs  in cases  where,  based  on  the  initial  conditions  of  the simulation,  the  approximate
model  would  be  expected  to be accurate.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The evolution of ocean waves is a weakly non-linear phe-
nomenon until close to the point at which waves break. A variety
of models have been proposed to describe this evolution. In this
paper we assume that the evolution of waves (up until breaking)
can be accurately described by numerical solutions to the poten-
tial flow equations using standard boundary conditions at the free
surface which we describe as the ‘fully non-linear’ model. We  com-
pare fully non-linear results to numerical solutions an approximate
model which simulates the evolution of the complex wave enve-
lope using higher order extensions of the non-linear Schrödinger
(NLS) equation.

Clamond et al. [1] carried out a comparison of the different
models examined in this paper but their work focussed on long
time-scales rather than the detailed structure of waves locally tall
and spatially concentrated wave groups as studied here. Com-
parisons were also made between the NLS and potential flow
simulations by Henderson et al. [2]. Comparisons of the higher
order non-linear Schrödinger equation to experiments were made
by Shemer and Dorfman [3] and Lo and Mei  [4]. A similar study to
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ours – comparing the approximate envelope model against an exact
numerical model – was carried out by Shemer et al. [5] comparing
the Zakharov equations, broadbanded NLS, and experiments. This
later paper found good agreement for narrow bandwidths between
the Zakharov equations and the broadbanded NLS and explored the
bandwidth limitations of this. Our study pursues this theme, com-
paring results from the broadbanded NLS equation against those
from a high order spectral scheme for the potential flow equations.

To compare the two models we  run simulations of focussed
wave-groups. Studying the non-linear changes to isolated wave-
groups has been used to investigate non-linear wave evolution
by numerous authors using physical experiments [6,7], numerical
models [8–10], and analytically [11,12]. In uni-directional waves
non-linearity leads to significant changes to the shape of the wave-
group – relative to linear evolution non-linear groups become taller
and narrower with the largest wave in the group moving towards
the front of the wave-group. An example of this is shown in Fig. 1.
The formation of this very sharp peak in both the wave envelope
and also an individual crest may  be compared to the prediction by
Lighthill [13] for the changes in both local amplitude and wavenum-
ber as a modulated Stokes wave train evolves. Lighthill predicted
the formation of a cusp in the wave envelope; his analysis being
based on Whitham’s theory [14] for nonlinear-systems where fre-
quency dispersion and amplitude dispersion would be expected to
be in competition.
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Fig. 1. Example of the non-linear changes to a wave-group using fully non-linear model. Both free surface and envelope shown with bound harmonics removed. (a) Linear
and  (b) fully non-linear.

This paper only examines the evolution of uni-directional
waves. In the real ocean deep-water waves are not uni-directional
but are directionally spread. This fundamentally changes the non-
linear processes by which large waves form [15] and means that
great caution must be used when applying the results of uni-
directional modelling to real ocean waves. In particular, the extra
amplitude observed in uni-directional waves is greatly reduced
in waves with a realistic directional spreading. Nevertheless, uni-
directional waves are an important limiting case for the evolution
of real ocean waves and are often used in numerical and physi-
cal experiments for practical reasons. An extension of the results
here to directionally spread wave-groups is presented in Adcock
and Taylor [16].

2. Method

In this paper we compare fully non-linear potential flow simu-
lations with results solving the broadbanded modified non-linear
Schrödinger equation. Our test cases study the focussing of isolated
wave-groups on deep water.

We  take as our initial conditions a wave-group which, under
linear evolution would form a ‘NewWave’ wave-group 80 periods
later. The NewWave is the expected shape of a large wave in a
random sea state (see Lindgren [17] and Boccotti [18]) and, at ‘focus’
(t = 0) is given by

�(x) = a

∑
nS(kn) cos(knx)∑

nS(kn)
,  (1)

where S(kn) is the discretised wavenumber spectrum of the under-
lying sea-state and a is the amplitude of the wave-group which
can specified arbitrarily. The shape of the linear NewWave group is
shown in Fig. 1a. This approach has been widely used to study non-
linearity of large waves and Adcock et al. [19] found that analysis
of isolated wave-groups closely matched the non-linear changes
observed to large waves in random wave-fields.

For these simulations we use a Gaussian wavenumber spectrum
which has the shape

S(k) = � exp

(
−(k − kp)

2

2s2x

)
, (2)

where kp is the peak wavenumber and sx is the bandwidth. The
parameter � scales the spectrum although as we  only use the
shape of the spectrum in this paper this factor does not reap-
pear. In this study we use kp = 0.0279 m−1 (a wavelength of 225 m)

and sx = 0.0046 m−1. The spectral bandwidth is chosen by fitting
the spectral peak of a JONSWAP spectrum with � = 3.3 with the
lower amplitude high frequency tail removed. As such, this band-
width is of the same order of magnitude as would be found in
a winter storm in the North Sea. To classify the runs we use the
non-dimensionalised amplitude (akp) that the wave-group would
reach under linear evolution. The most non-linear case we consider
would have focussed with akp = 0.18. Allowing for the truncation of
the high spectral tail, a wave of this steepness might be appropri-
ate for a 1 in 1000 wave in a limiting steepness sea-state. Fig. 2
in Socquet-Juglard et al. [20] demonstrates that a limiting steep-
ness of HSkp = 0.36 occurs in the northern North Sea. Assuming a
Rayleigh-type linear crest distribution in a severe sea-state and
the truncation of the upper spectral tail, a maximum NewWave
individual steepness of akp = 0.18 is plausible.

The numerical solution to the potential flow equation uses the
high-order pseudo-spectral numerical scheme developed by Bate-
man  et al. [21]. The results used in this paper are taken from Gibbs
[22] where they are analysed in depth. As with any numerical solu-
tion the results will not be exact, however great care was  taken
with the simulations and for the purposes of this paper we  assume
that the results of these simulations can be taken as a benchmark
to compare against approximate models. The results in this paper
used a spatial resolution of seven times the peak wavenumber, a
time step of 0.02 s with an Adams–Bashford scheme with the equiv-
alent peak wave period Tp = 12 s, this gives 97 time-steps per period.
The length of the ocean in the assumed periodic computational
domain is 8.0 km with 1024 spatial points. A 7th order expansion of
the Dirichlet–Neumann G-operator is used [21]. Some filtering was
applied to the highest wavenumber using the 5-point smoothing
function of Dommermuth and Yue [23].

Higher order extensions to the non-linear Schrödinger equation
were derived in a series of papers by Dysthe and Trulsen [24,25].
The equations model the complex wave envelope, A, of the freely
propagating waves. The free surface may  be recreated from the lin-
ear components and narrow bandwidth approximations to the 2nd
and 3rd order bound components

� = R(�linear + �2− + �2+ + �3), (3)

where

�2− = 1
2ω
∂�
∂x

− 1
16k

∂2|A|2
∂x2

, (4)

�linear = A exp(i(kx − ωt)), (5)
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