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a  b  s  t  r  a  c  t

Oscillations  within  a  rectangular  harbor  of  parabolic  bottom  induced  by  water  surface  disturbances  are
investigated  numerically  based  on  Boussinesq  equations  and  results  are  used  to reveal  the  characteristics
of the  oscillations  generated  by disturbances  of  this  type.  The  similarities  and  differences  compared
with  those  generated  by  a movable  seafloor  are also  discussed.  Relatively  local  and  small-scale  water
surface  disturbances  may  induce  obvious  transverse  oscillations  with  little  trace  of  longitudinal  ones.
The predominant  transverse  components  are  those  with  small  alongshore  mode  number  m  and  no  node
in the  offshore  direction.  The  augmentation  of the rapidity  of  depth  variation  of  the  parabolic  bottom
may  shift  the  resonant  frequencies  to larger  values.  These  transverse  modes  are  sensitive  to  the initial
position  of  water  surface  disturbances.  The  spatial  structure  of  each  mode  is well  captured  by  the existing
analytical  solution  based  on  shallow  water  equations.  Although  longitudinal  oscillations  may  not  be
steadily  generated  with  water  surface  disturbances,  some  patterns  of  several  low-mode  ones  occur  and
are also  sensitive  to  the  position  of  the  disturbances.  Wavelet  spectra  are  used  to  analyze  their  evolutions
and  comparisons  are  made  with  theoretical  predictions  for the three  principle  longitudinal  modes.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Harbor oscillations may  cause many problems such as pre-
venting of cargo operations, breaking of mooring ropes, damaging
of infrastructures or moored vessels and can be triggered by the
match of the eigenvalues of the free oscillations of a harbor and the
external forces coming from wave groups, atmospheric pressure
disturbances, landslides or shear flows etc.

Studies of harbor oscillations are firstly carried out analytically
on a constant depth on some harbor geometries like a rectangu-
lar harbor, a basin with an entry channel [1,2], multiple basins or
a coupled bay-river system [3,4]. Based on the understanding of
the physical mechanism of harbor oscillations achieved by these
early work, formulations are developed to describe the response
of harbors with different depths [5,6]. For a rectangular harbor
with a constant slope, Wang et al. [7] presented an explicit for-
mula of longitudinal oscillations based on the linear shallow water
approximation and revealed that the oscillation amplitudes and the
positions of nodes within the harbor are influenced by the slope.
The transverse oscillation modes due to refraction of the waves
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on the parabolic bottom and the dispersion relationship are also
discussed. Following them, Shao et al. [8] derived the formula-
tions for a harbor of parabolic bottom. With the analytic solutions,
Wang et al. [9] investigated numerically the oscillations induced
by seafloor movements on a constant slope based on a Boussinesq
type model and observed that small-scale seafloor movements usu-
ally generate very weak longitudinal oscillations but evident larger
transverse ones which are sensitive to the location of the movable
seafloor. Relatively larger-scale seafloor movements containing
more energy are found possible to induce larger longitudinal oscil-
lations. However, in addition to seafloor movements, water surface
disturbances within the harbor, although embody less energy, are
much more frequently encountered and can be caused easily by
floating body movements, changing atmospheric pressures, dock
failures etc. at different locations [10,11]. As another type of dis-
turbance acting on the water body inside the harbor, water surface
disturbances may  manifest different behaviors and have different
properties.

The analytical descriptions derived by Shao et al. [8] are sum-
marized in Section 2 with a brief introduction of the Boussinesq
type model MIKE 21 BW [12] used for the simulations. In Section 3,
numerical investigations are presented on the oscillations induced
by water surface disturbances. Effects of variations of the bottom
parameter (the rapidity of depth variation) of the parabolic bottom
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Fig. 1. Definition sketch of the harbor and coordinate system of the analytic solu-
tions of Shao et al.

Fig. 2. Definition sketch of the rectangular harbor of parabolic bottom with water
surface disturbance of Gaussian shape at the corner.

and the location of the disturbances are examined. Conclusions are
drawn in the last section.

2. Analytic solutions of oscillations within a rectangular
harbor of parabolic bottom and the numerical model
applied

2.1. Analytic solutions of oscillations within a rectangular harbor
of parabolic bottom

A brief review of analytic solutions derived by Shao et al. [8]
for both longitudinal and transverse oscillations in a rectangular
harbor of parabolic bottom is given in this section and the details
of the formulations can be found in their work. For a rectangular
harbor with the long axis in the positive x direction shown in Fig. 1,
the backwall and the entrance are located respectively at x = d and
x = d + L. Assuming a horizontal seafloor in the open ocean, the
water depth inside and outside of the harbor is given by:

h (x, y) =
{
h0 + ax2d ≤ x ≤ L;

hpx > L
(2.1)

where a describes the rapidity of the variation of the bottom and
h0 is the water depth at the origin of the x axis. When h0 > 0, it
denotes mathematically a so-called non-idealized parabolic bot-
tom while h0 = 0 means a so-called idealized parabolic bottom. For

a non-idealized parabolic bottom with h0 > 0, the backwall can be
situated at x = 0 where the water depth is h0 and for an idealized
bottom, x = 0 is where the extended virtual bottom and mean sea
level intersect and the backwall may  be placed at a certain distance
from the origin of the x axis to assure some positive water depth
there. The width of the harbor is 2b from y = −b to y = b while the
shoreline runs in the y direction (the cross harbor direction). The z
coordinate is positive upward from the mean water level. The open
sea outside the harbor has a constant depth that equals hp.

The solution of longitudinal oscillations based on linear shallow
water approximation for a non-idealized parabolic bottom can be
described as

�L = C1P� (�) + C2Q� (�) (2.2)

where P� and Q� are zero order Legendre functions of the first and
second kinds respectively with � = x
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Euler’s constant. A0 is the amplitude of the incident wave, k is the
wave number, ω is the angular frequency of the longitudinal oscilla-
tion and g is the acceleration of gravity. The apostrophe represents
first derivative with respect to �. For an idealized bottom with
h0 = 0, the solution of longitudinal oscillations can be simplified
as
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where ı = 1 − 4ω2

ga and x ∈ [d, L]. The constants D1 and D2 may  be
determined with the boundary conditions at the backwall and at
the entrance of the harbor.

The transverse oscillations �T are excited when the transverse
wavelength shares a specific relationship with the harbor width 2b
in terms of wave number km,n which is described by

km,n = m�

2b
, m = 1, 2, 3, . . . (2.6)

while there are m possible transverse modes, the modes with small
m may  be most important because of their relatively long wave-
length.

Transverse oscillations within the rectangular harbor of ideal-
ized parabolic bottom can be given as

�T = C3

(
�

km,n

)−1/2
Kv (�) (2.7)
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