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This paper  presents  a new  methodology  to reproduce  the  interaction  between  waves  and  floating  objects
over mildly  variable  bathymetry.  The  elliptic  mild  slope  equation  solves  the fluid  velocity  potential  over
a domain,  which  does  not  include  the  near  field  around  each  object.  The  waves  scattered  by  the  floating
bodies  are  considered  by  means  of  boundary  conditions  at  the  edges  of  the  near  field  areas.  The  coefficients
of  these  boundary  conditions  are  obtained  nesting  the  solution  of a near field  three  dimensional  solver
with  the  elliptic  model  solution.  Comparison  with  a  3D  numerical  model,  which  solves  the potential  flow
field  over  the whole  domain,  is used  to validate  the proposed  approach.  An  example  of  application  to
reproduce  the wave  field  around  an array  of wave  energy  converters  is  presented.
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1. Introduction

The wave field in an open sea with the presence of floating
objects is composed by incident, diffracted and radiated waves.
The scattering of an incident wave field by a group of bodies, may
lead to wave forces on each of them that significantly differ from
those applied on an isolated body. The detailed reproduction of
multiple floating objects requires accurate modeling of the hydro-
dynamic interaction problem, and, given the complex flow field,
usually requires three-dimensional (3D) analysis. When dealing
with arrays of wave energy converters (WEC hereinafter), the need
to perform several simulations in order to optimize the WECs lay-
out in terms of wave energy production, cannot be guaranteed at
reasonable computational costs with 3D models covering the whole
area of interest.

Beels et al. [1] developed a numerical model, which solves the
time-dependent mild-slope equation, to reproduce the wave field
around single or multiple WECs. The issue of reducing the com-
putational effort on simulating large sea areas in the presence of
wave energy converter devices has been obtained also by coupling
wave propagation model with nested solutions describing the WEC
dynamics. Singh and Babarit [2,3] and Babarit et al. [4] proposed
a model which solves the linear potential theory with boundary
element method (BEM) around each isolated WEC, and the inter-
actions resulting from the scattered wave field among the bodies
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are then taken into account via plane wave approximation in an
iterative manner. McNatt et al. [5] use the commercial BEM solver
WAMIT  to compute the scattered wave on a circular-cylindrical
section, and propose a new method to compute the cylindrical
wave-field coefficients from the known cylindrical section for an
arbitrary geometry. Charrayre et al. [6] proposed a methodology
based on the use of a BEM model (namely Aquaplus) to solve
the radiation–diffraction problem locally around each WEC, and to
combine it with a model based on the mild slope equation (ARTEMIS
software), within the linear wave theory. They use the Kochin func-
tion (a far field approximation) to propagate the perturbations
computed by Aquaplus into Artemis.

Other approaches to achieve higher computational efficiency
have been proposed in ship motion analysis related problem. Tak-
agi et al. [7] and Ohyama and Tsuchida [8] proposed “partially 3D
models”, where a BEM based 3D model, applied to the near field sur-
rounding the ship, is solved in combination with a Finite Element
Method (FEM) based 2D model in the remaining sea area.

Ohyama and Tsuchida [9] derived new sets of mild slope equa-
tions for both the sea area excluding the floating body as well as for
the domain underneath the body. The first set allows the reproduc-
tion of both propagating and evanescent modes, while the second
set reproduces the radiated wave field. Both mild slope equations
in the two domains are solved simultaneously with appropriate
matching boundary conditions.

The numerical model here proposed is based on the solution of
the classical linearized mild slope equation [10], at the undisturbed
free surface. The near field around each floating device is excluded
from the model’s domain, however the hydrodynamic occurring
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around the bodies is considered by means of appropriate novel
boundary conditions. These boundaries are therefore located inside
the domain and embed the near field around each floating body.
The proposed model is here applied to simulate WECs of the point
absorber type, and mainly it considers the hydrodynamic response
of the floating devices with the incident wave field. Even if ref-
erence to such devices is made throughout this paper, the model
appears suitable for other applications, which deal with hydro-
dynamic interaction between waves and floating bodies.

The paper is structured as follows: the next section introduces
the model equations and the numerical technique. Section 3 shows
the model validation, obtained by comparison with the 3D refer-
ence solution, and in Section 4 its optimization in the WECs array
reproduction. Finally conclusions are given.

2. Model equations and numerical technique

The wave interaction with an array of WECs is modeled within
the framework of the linearized potential theory. The wave ampli-
tude and body motion are assumed small with respect to the wave
length and body dimensions, respectively. The fluid is inviscid and
incompressible, and the flow is irrotational. The bathymetry is
assumed mildly sloping, i.e. ∇hh � kh,  where h(x, y) is the water
depth, k is the wave number and ∇h represents the gradient in
the horizontal plane, x, y. Under these assumptions, the mild-slope
equation [10] defines the space evolution for harmonic motion in
terms of fluid velocity potential, �(x, y;ω), at the free-surface:

∇h · (ccg∇h�)  + k2ccg� = 0 (1)

where c and cg are respectively the phase and group celerity. The
elliptic mild-slope Eq. (1) is based on the assumption that the fluid
potential can be expressed as �(x, y, z;ω) = �(x, y;ω)f(z), where f(z)
describes the kinematic field along the water depth resulting from
the linear wave theory for harmonic wave propagating in constant
depth, which however still holds for mildly sloping bottom

f (z) = cosh[k(h + z)]
cosh(kh)

.  (2)

Eqs. (1) and (2) are valid for monochromatic waves, however given
the linearity of the problem an irregular sea state can be reproduced
by superimposing the solutions for different wave frequencies.

As above introduced, Eq. (1) is solved over a large sea area in
the presence of an array of multiple bodies. As example, in the left
panel of Fig. 1 an array of 4 × 3 floating devices is sketched, the light
gray area at z = 0 representing the domain of integration of Eq. (1).
The thick lines represent the external open sea boundary SO, while
the dashed circular lines represent inner boundaries, SI, where the
conditions for modeling the wave field scattered by each WEC, and
described in the following, are imposed. In the right panel of Fig. 1
the area around one WEC  is shown. The cylindrical gray surface is

highlighted to delimit the near field, around the WEC, from the far
field.

The mathematical condition applied at all the boundaries, SO
and SI, is generally formulated as:

∂�

∂n
+ ˛� = G (3)

where n is the unit vector normal to the considered boundary,  ̨ is
an absorption/reflection coefficient [11], while G is a generic source
term. To reproduce at the boundary SO an open-sea condition, Eq.
(3) is used with G = 0 and  ̨ =− ik cos(ı), i.e. ı is the angle between
the wave ray and the unit vector n. In this case Eq. (3) approximates
the condition of radiation of progressive planar waves [11–13]. At
the same time a wave-maker condition can also be considered at
SO to simulate the entrance of incident waves into the domain; in
this case the generation term G can be related to the velocity field
at z = 0 of a given incident wave [14].

At the internal boundaries SI, the coefficients  ̨ and G must
account for the waves transmitted and scattered through the
boundary by the wave-body interaction that takes place in the (not
included) near field areas. By splitting each circular SI boundary in
a finite number N of arc elements, the boundary condition (3) can
be imposed at each ith arc, with i = 1, . . .,  N, as:

�i
n + ˛ii�i =

N∑
j=1; j  /=  i

˛ji�j (4)

where n subscript denotes the partial derivative on the normal
boundary direction. Therefore, Eq. (4) relates the coefficient Gi, for
the ith arc element, to the sum of fluid potential contributions from
all the other arc elements on SI boundary. The set of N equations
(4) is therefore reformulated as:

�i
n =

N∑
j=1

˛ji�j i = 1, . . ., N. (5)

The computational technique to achieve the  ̨ coefficients con-
sists on using the set of N Eqs. (5) with known values of �n and
�,  which come from numerical or experimental test that repro-
duces the complete 3D wave-body interaction in the near field. In
the model application presented in this paper, a numerical com-
putation is used to solve the Laplace equation for the fluid velocity
potential and the equations of the body motion. In detail, the 3D
mathematical problem is described in Appendix A. Its numerical
domain of application is the 3D near field around just one floating
body, and its solutions at the undisturbed free-surface along the SI

boundary is used to calculate the  ̨ coefficients. If all the floating
devices are identical, the  ̨ coefficients are valid for all the circular
boundaries, SI.

The system (5) of N equations contains a number of N2 of ˛
coefficients. The methodology to get the values of these boundary

Fig. 1. Sketch of a sea area in the presence of 4 × 3 WECs (left plot). The gray area at z = 0 represents the model domain of integration. The domain’s boundaries are named
SO and SI , respectively to indicate the open-sea boundaries and the inner ones. In the right plot is shown a more restricted area, around one WEC.
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