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a  b  s  t  r  a  c  t

This is a theoretical  study  on  the interfacial  water  waves  with  a  free surface  in a two-layer  system,  where
the  lower  fluid  is  taken  to be  heavier  than  the  upper  one.  Lagrangian  matching  conditions  are  introduced
for  the  physical  fields  separated  by  the interface.  And  a  perturbation  analysis  is carried  out  to  the third
order  to  find  the  particle  trajectory  in the  Lagrangian  description.  Observing  the  derived  solution,  a
symbolic  computation  is  introduced  for obtaining  the  fifth  order  solution.  The  Lagrangian  drifts,  wave
frequency,  and set-up  are  also  given  as part  of the  solutions.  Discontinuities  across  the  interface  are  found
for  all  of  these  physical  quantities.  A  generalized  set-up  effect  is  found  that  the  Lagrangian  mean  levels
come  near  to  both  of  the  free  surface  and  internal  interface.  Through  some  numerical  calculations,  it  is
shown  that  the  larger  density  difference  or relative  wave  height  results  in the  larger  drift  velocity.  The
direction  of particle  motion  in  the  upper  layer  is anti-clockwise  in  contrary  to that  in the  lower layer.
Better  convergence  for the Lagrangian  solution  than  the  Eulerian  one  is  numerically  demonstrated  for
the  barotropic  mode  that  the  wave  motion  is dominated  on the  free  surface.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Interfacial water waves are of considerable practical interest in the ocean acoustics [1], physical oceanography [2] and marine ecology
[3]. Internal waves propagating in the interior of the ocean may  seriously cause damage to ocean structures, such as oil platforms and
rail or road tunnels lying on the seabed. Internal waves will also lead to the advection of water particles along with nutrients, larvae and
sediments. Therefore, knowledge of the particle dynamics in the internal waves in addition to the wave and current effects at the ocean
surface is important.

Internal waves have been an active research field for decades. Studies have been performed theoretically, numerically, as well as
experimentally. The study of internal waves propagating along a boundary between two  layers of infinite thickness was pioneered by
Stokes [4]. Hunt [5] obtained third-order formulas for the wave profile and the phase velocity in the case of two  semi-infinite layers.
Thorpe [6] extended Hunt’s analysis to include the effects of finite fluid depth. Tsuji & Nagata [7] applied the Stokes’ expansion technique
to obtain the fifth-order solution for the internal waves moving between two layers of infinite thickness. Holyer [8] numerically calculated
the maximum steepness for internal progressive waves. Funakoshi and Oikawa [9] studied two-dimensional long internal waves of large
amplitude in a two-layer inviscid fluid between a rigid upper boundary and a rigid bottom. To describe internal waves for both the
flat top-layer surface and the free-surface boundary conditions, Grimshaw and Pullin [10] utilized integral equation techniques to study
the large-amplitude periodic waves of extreme form for internal waves. Umeyama [11] derived third-order asymptotic solution for the
finite-amplitude interfacial wave and conducted experiments to validate the solution. Allalou et al. [12] studied the properties of three-
dimensional periodic interfacial gravity waves. The above approximate analytic and numerical solutions to the internal wave problems
were obtained using the Eulerian formulation.

Some analytical studies [4,13–20] have provided the particle trajectories for a wide variety of nonlinear waves in the Lagrangian
description. These works have proved that there is no closed particle path throughout the fluid domain for the irrotational flows detailed
therein. As a result, the mass transport can be well analyzed in the Lagrangian description for nonlinear progressive waves. Furthermore, the
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Fig. 1. Sketch of a two-layer fluid system.

particle motions predicted in these papers have been borne out by experimental evidence [21–23]. In addition, the third-order perturbation
solutions [24–26] have been derived for nonlinear gravity-capillary and gravity waves with uniform or constant-vorticity current using
the Lagrangian approach. To date, only a limited few theoretical solutions have been derived for internal waves in Lagrangian coordinates.
Umeyama and Matsuki [27] gave a second-order solution of particle trajectory. However, they did not give the explicit expression nor
include Lagrangian mean level and Lagrangian wave frequency. It has been shown that the Lagrangian approximations are more accurate
than the Eulerian counterparts of the same order in the literatures [21,28,29]. However, reports on this improvement for the interfacial
water waves in the Lagrangian description are rather limited.

In this paper, the Lagrangian formulations for waves problems [24–26] are further generalized to a two-layer fluid problem with a free
surface. We  aim to study particle trajectories of nonlinear interfacial waves completely based on the Lagrangian system. We  look into the
effect of the layers of different densities on an interfacial water wave, the motion of which is assumed to be inviscid, incompressible and
irrotational. We  will construct asymptotic expansions of the solution in powers of the relative wave amplitude. Approximate solutions are
explicitly addressed up to the third order and symbolically computed up to the fifth order based on the technique recently introduced by
Tsai, Chen and Hsu [30]. A detailed analysis of the particle trajectories for interfacial waves is then carried out. Also, the Lagrangian drifts,
wave frequency, and set-up are all studied and explicitly given up to the third order.

The problem formulation, and the procedures for constructing asymptotic solutions are described in §2. In §3, we will derive equations
for the properties of surface- and interfacial trajectories of particles up to third order. In §4,  a symbolic computation is introduced for
obtaining higher-order solutions. In §5  the surface profiles, Lagrangian drifts, wave frequency, mean level, and trajectories of particles in
the two-layers fluid system are presented. Finally, some concluding remarks are given in §6.

2. Formulation of the problem

As sketched in Fig. 1, we consider a two-layer stratified system in which a lighter fluid layer rests on the top of a heavier fluid layer.
The heavier fluid is bounded below by a rigid horizontal bottom. The lighter fluid is bounded above by a free surface. The depths of the
two layers are hI and hII , respectively. Then, we  can define the total depth as h = hI + hII . It is assumed that the fluids are homogeneous
and separated by a sharp interface with little mixing. The densities of the two layers are �I and �II , respectively, and the density ratio is
defined as �r = �I/�II < 1. All physical quantities related to the upper fluid layer have the index I, while those related to the lower layer are
indexed with II. We  refer the equations of motion to Lagrangian coordinates (a, b), which are the undisturbed horizontal/vertical positions
of a fluid particle. The y-axis is directed vertically upwards with the origin b=0 fixed at the equilibrium level of the interface. The current
position of a particle, denoted by (x, y), is a function of a, b and time t ≥ 0.

As in any two-layer system, two modes of wave motions (barotropic and baroclinic modes) are possible. The baroclinic mode, in
which the interfacial wave amplitude is larger than that of the free-surface, is of interest and significance here. Following Fenton [31], the
perturbation parameter is chosen as

ε = kH

2
, (2.1)

with H and k = 2�/� being the interfacial wave height and wavenumber. And � is the wave length of the interfacial wave. Under the
standard notation for the Jacobian, the mass conservation equation is given as

J = ∂(xl, yl)
∂(a, b)

= 1, (2.2)

where the subindex l is used to distinguish between the upper and lower fluid domains as

l =
{

I forthefirstlayerinhI ≥ b ≥ 0,

II forthesecondlayerin0 ≥ b ≥ −hII .
(2.3)

In practical derivation, it is convenient to take the time differentiation of Eq. (2.2) to have

∂(xl,t, yl)

∂(a, b)
+ ∂(xl, yl,t)

∂(a, b)
= 0. (2.4)
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