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a  b  s  t  r  a  c  t

Considering  the  actual  seaway  condition,  stability  and  capsizing  of  nonlinear  ship  rolling  system  in
stochastic  beam  seas  is of  significant  importance  for  voyage  safety.  Safe  zone  are  defined  in the  phase
space  plan  of  the  unperturbed  Hamilton  system  to  qualitatively  distinguish  ship  motions  as  capsize  and
noncapsize.  Capsize  events  are  defined  by  solutions  passing  out of  the  safe  zone.  The  probability  of  such
an occurrence  is  studied  by virtue  of the  random  Melnikov  function  and  the  concept  of phase  space  flux.
In  this  paper,  besides  conventional  wave  excitation,  the  effect  of  wind  load  is also  taken  into  account.  The
introduction  of wind  load  will  lead  to asymmetry,  in  other  words,  it transforms  the  symmetric  hetero-
clinic orbits  into  asymmetric  homoclinic  orbits.  For  asymmetric  dynamical  system,  the  orbital  analytic
solutions  and  its  power  spectrum  are  not  readily  available,  and  the technique  of  discrete  time  Fourier
transformation  (DTFT)  is used.  In the end,  as verification  of theoretical  critical  significant  wave  height,
capsizing  probability  contour  diagram  is  generated  by  means  of  numerical  simulation.  The contour  dia-
gram shows  that  these  analytical  methods  provide  reliable  and  predictive  results  about  the  likelihood  of
a vessel  capsizing  in a given  seaway  condition.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Stability against capsizing in heavy seas is one of the most
fundamental requirements considered by naval architects while
designing a ship. Research using scale models in realistic seaway
conditions, combined with theoretical developments in nonlinear
systems dynamics has led to a better understanding and insight into
the nature of ship’s capsizing process. Mathematical models and
numerical methods which are capable of predicting ship’s capsize
in different environmental conditions with sufficient engineering
accuracy have been developed. Such analyses can aid risk-based
ship handling [1]. Generally, the mathematical models involve two
different problem areas. One deals with dynamics of ship motion
which consists of techniques such as frequency domain or time
domain simulation and properties of nonlinear systems [2], while
the other deals with the stochastic nature of wave excitation,
including the identification of sea wave spectra and encountered
wave groups consisting of high waves expected to cause the ship
to capsize [3].
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For the analysis of dynamic behavior of nonlinear systems such
as ship rolling, several methods have been developed. Nayfeh and
Khdeir [4] studied nonlinear rolling motion in regular beam seas
and acquired second order analytical solution by virtue of multi-
scale method. In addition, they studied period doubling bifurcation
and chaos phenomenon by using the Floquet theory and bifurcation
theory. Virgin [5] indicated that with the increase of external exci-
tation, the ship rolling solution will become chaotic through a series
of period doubling bifurcation and capsizing subsequently occurs
as a result of instability of motion. EI-Bassiouny [6] studied the
nonlinear oscillations by time averaging method. Francescutto and
Contento [7] used Krylov–Bogoliubov–Mitropolsky (KBM) method
to investigate the bifurcation phenomena in ship rolling and
compared it with experimental results. Fan [8] investigated the har-
monic balance method and harmonic acceleration method for the
nonlinear resolution.

The solution of threshold value of chaos is a critical step in stabil-
ity analysis and Melnikov method is one of relatively few analytical
methods used to predict the onset of chaotic motion in dynamical
systems. It measures the intersection of the homoclinic (hetero-
clinic) orbits, which will lead to chaotic motions in the system.
During the last two decades, a great deal of work has been done
using Melnikov method to predict possible capsize, with emphasis
on roll motion. Nayfeh and Balachandran [9] deduced the Melnikov
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Nomenclature

g the acceleration of gravity (9.81 m/s2)
� displacement (m3)
� the rolling angle (rad)
GZ the righting arm (m)
J�� rotational moment of inertia (kg m2)
R1 first order coefficient of righting arm (m)
R3 third order coefficient of righting arm (m)
R5 fifth order coefficient of righting arm (m)
D1 first order coefficient of damping moment

(kg m2 s−1)
D3 third order coefficient of damping moment (kg m2 s)
�(t) wave elevation (m)
M̃∗(˝) the Fourier transformation of M̃(t0)
Sy(˝)  the power spectrum of y(t)
� the mean value of M̃(t0)

 ̊ rate of phase space flux
M(t0) the Melnikov function
y(t) the parametric orbital equation
M̃(t0) the oscillatory part of random Melnikov function
M̄ the constant part of random Melnikov function
�J�� added rotational moment of inertia (kg m2)
Hs significant wave height (m)
Tz zero-crossing period (s)
Fwave wave-excited rolling moment (N m)
Fwind wind-excited rolling moment (N m)
�∗(˝)  the Fourier transformation of �(t)
y∗(˝) the Fourier transformation of y(t)
S�(˝) the power spectrum of �(t)
SM̃(˝)  the power spectrum of M̃(t0)
� the variance of M̃(t0)

function and applied the function to three typical oscillators. When
the zero point of Melnikov function needs to be computed, analyt-
ical solutions of homoclinic or heteroclinic orbits were obtained in
their works. Falzarano [10] and Falzarano et al. [11] applied Mel-
nikov’s method to the single-degree-of-freedom equation of roll
motion using a cubic polynomial for the GZ curve with a nonlinear
damping term for both heteroclinic and homoclinic cases. When
encountered with stochastic seaway conditions, Melnikov function
has no simple zero point in the sense of mean value and therefore
random Melnikov function is derived and described in terms of its
statistical properties to deal with this kind of stochastic dynamical
system. Its results are linked to the likelihood of capsize through
measurement of the rate of phase-space flux. Frey and Simiu [12]
firstly obtained the relationship between phase flux function and
Melnikov function and subsequently random Melnikov function
was established by Hsien et al. [13] on this basis. Since then, random
Melnikov function has been adopted in many works [14–17].

When using random Melnikov function, the parametric orbital
equations of heteroclinic or homoclinic need to be determined. For
simple symmetric system, there are usually two methods, namely
precise analytical solution and approximate analytical solution
[18–20]. However, when subjected to a constant wind load or an
imbalance in cargo loading, the symmetry breaking occurs [21].
In this paper, the discrete time series of orbit equations are first
obtained and then the technique of discrete time Fourier trans-
formation (DTFT) is adopted to get the power spectrum of orbit
equations. By virtue of rate of phase space flux, the threshold
values of significant wave height are obtained and capsizing prob-
ability contour diagram is generated in the end as a numerical
verification.

2. The nonlinear rolling system in wind and stochastic
beam seas

In this paper, we  use a second-order non-autonomous system
to model ship rolling motion. We  assume that the ship does not
possess any forward speed and the ship rolling motion is uncou-
pled from other motions. The latter assumption is not a good one in
the presence of internal resonances. In the context of ship motions,
an internal resonance can occur when the pitch frequency is about
twice the roll frequency. This phenomenon is likely to occur in fish-
ing vessels in which the pitch frequency is about 1.5–3 times the roll
frequency. The damping models used in this study are all assumed
to be independent of the frequency of the roll oscillations [21]. The
transverse sections of the studied ship are shown in Fig. 1.

2.1. The excitation terms in the rolling system

To consider the actual environmental factors in ship’s voyage,
we take stochastic wave excitation and wind force moment into
account. In the following sub-sections, we  discuss perspectives of
these two parts while focusing on how these excitation terms are
determined.

2.1.1. Crosswind model
For container ships, the effect of crosswind on roll motion cannot

be ignored because the area subjected to above-water wind is huge.
As shown in Fig. 2, the wind heeling moment can be expressed as

Fwind = Fwind|�=0 cos � (1)

Fig. 1. Transverse sections of studied ship.

Fig. 2. Container ship rolling schematic plan.
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