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a  b  s  t  r  a  c  t

The  validity  of  the  independence  principle  applied  to the  vortex-induced  vibration  (VIV)  of  an  inclined
cylinder  in  steady  flow  is investigated  by conducting  numerical  simulations.  In  order  to  create  a perfect
end-effect-free  condition,  periodic  boundary  condition  is  applied  on  the  two end  boundaries  that  are  per-
pendicular  to  the  cylinder.  It  is  found  that  the response  amplitude  and  frequency  for  an  inclination  angle
of   ̨ =  45◦ agree  well  with  their  counterparts  for ˛ =  0◦. The  numerical  results  demonstrated  the  validity
of  the  independence  principle  in  the case  of  vortex-induced  vibration,  which  has  not  been  demonstrated
by  laboratory  tests  due  to  the  difficulty  in avoiding  the  end  effects.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Vortex-induced vibration (VIV) of circular cylinders has been
studied extensively due to its engineering significance. The review
of the studies on VIV can be found in [1–5]. Baratchi et al. [6] inves-
tigated the VIV of a heated cylinder in fluid flow and van Brummlen
[7] studied the effects of the added mass on the fluid-structure
interaction. Efforts have also been made to control the VIV [8,9].
Compared with the studies where the flow direction was perpen-
dicular to the cylinder, the studies on the VIV of an inclined cylinder
are much fewer. For flow past an inclined stationary cylinder, it is
commonly believed that the independence principle (IP) is valid
for inclination angles up to 45◦ [10–12]. The inclination angle of
0◦ corresponds to the case where the cylinder is perpendicular to
the cylinder. The IP states that the drag and lift coefficients on the
cylinder are independent on the inclination angle if they are nor-
malized by the velocity component perpendicular to the cylinder.
It was found that the error of the independence principle increases
with increasing inclination angle [11]. By numerical simulations,
Lucor and Karniadakis [13] found that the angles of the vortices in
the wake are somewhat less than the cylinder’s inclination angle
for large inclination angles of 60◦ and 70◦.

Some experimental studies were conducted to testify the valid-
ity of the IP on the response amplitude and frequency of an
elastically mounted inclined cylinder in fluid flow [14–16]. The set
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up of these experimental studies are shown in Fig. 1(a), where an
inclined cylinder is partially submerged in the water flow. The incli-
nation angle  ̨ is negative and positive if the submerged part of
the cylinder is inclined towards upstream and downstream direc-
tions, respectively. The response for a negative inclination angle
was found not the same as that for a same positive angle in these
experimental studies. The effects of the free-end of the cylinder are
to blame for the difference [14]. Vlachos and Telionis [17] found
that the free-surface affects vortex shedding almost two to three
cylinder diameters below the free surface if an inclined cylinder
pierce the free-surface. It appears that it is difficult to obtain ide-
ally end-effect-free results using the laboratory setup shown in
Fig. 1(a).

Three-dimensional numerical studies have been conducted to
investigate VIV of a cylinder in fluid flow whose direction is per-
pendicular to the cylinder span [18–20]. van Brummenlen et al. [21]
conducted a detailed study on boundary-coupled problems in fluid-
structure interaction. In this paper, a numerical study is conducted
to study the VIV of an elastically mounted inclined cylinder in a fluid
flow. In order to testify the validity of the IP for the vibration ampli-
tude and frequency without the influence from the end effects, the
periodic boundary conditions are used at the two  end boundaries of
the computational domain. It is found that the response amplitude
and frequency for an inclined cylinder with an inclination angle of
45◦ agree very well with those for a non-inclined cylinder.

2. Numerical method

Fig. 1(b) is the computational domain for simulating the VIV of
an inclined cylinder in a fluid flow. Simulations are conducted for
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Fig. 1. (a) The computational domain used in this study; (b) the experimental set-up in Franzini et al. [14,15] and Jain et al. [16].

a constant mass ratio of 2, a constant Reynolds number of 1000
and reduced velocities ranging from 2 to 12. The mass ratio, m*,
is defined as the ratio of the cylinder mass to the displaced fluid
mass; the Reynolds number is defined as Re = UnD/�, with Un, D and
� being the velocity component perpendicular to the cylinder, the
diameter of the cylinder and the kinematic viscosity of the cylinder,
respectively, and the reduced velocity is also defined based on the
velocity perpendicular to the cylinder as Vr = Un/fnD, with fn being
the structural natural frequency of the cylinder, i.e., the natural
frequency measured in the vacuum. The damping ratio � is set at
zero in this study. The damping ratio is defined as � = C/2

√
Km,

where C is the damping coefficient measured in vacuum, K is the
spring constant and m is the mass of the cylinder.

The interaction between the fluid flow and structures at large
Reynolds numbers is generally simulated by the turbulence models.
The commonly used turbulence models include large eddy simula-
tion (LES), Reynolds-averaged Navier–Stokes (RANS) equation and
the recent developed residual-based variational multiscale turbu-
lence modelling (RBVMS) [22,23]. Although turbulence models can
simulate the flow at high Reynolds numbers, they generally intro-
duce uncertainty to the numerical model. To avoid any uncertainty,
VIV of a cylinder is solved by direct numerical simulation (DNS) in
the laminar flow regime with a Reynolds number of 150 and in

the turbulent flow regime with a Reynolds number of 1000. The
three-dimensional incompressible Navier–Stokes (NS) equations
are solved by the finite element method for simulating the flow
and the equation of the motion of the cylinder is solved for pre-
dicting the vibration of the cylinder. The NS equations are solved
using the Arbitrary–Lagrangian–Eulerian (ALE) scheme. In the ALE
scheme, the finite element nodes move according to the vibration
of the cylinder. The incompressible NS equations in the ALE scheme
are written as
∂ui

∂xi

= 0, (1)
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where x1, x2 and x3 represent the coordinates x, y and z, respectively,
ui is the velocity in the xi-direction, ûi is the velocity component of
mesh moving in the xi direction, � is the density of the fluid, p
is the pressure and t is the time. The NS equations are solved by
the Petrov–Galerkin finite element method developed in [11]. The
vibration of the cylinder is simulated by solving the equation of the
motion:

mŸ + CẎ + KY = Fy, (3)

Fig. 2. Time histories of the vibration displacement.
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