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a  b  s  t  r  a  c  t

While  domain  reduction  has  been  successfully  applied  in  branch-and-bound  based  global  optimiza-
tion  over  the  last  two  decades,  it has not  been  systematically  studied  for  decomposition  based  global
optimization,  which  is  usually  more  efficient  for problems  with  decomposable  structures.  This  paper  dis-
cusses  integration  of  domain  reduction  in  Benders  decomposition  based  global  optimization,  specifically,
generalized  Benders  decomposition  (GBD)  and  nonconvex  generalized  Benders  decomposition  (NGBD).
Revised  GBD  and  NGBD  frameworks  are  proposed  to incorporate  bound  contraction  operations  or/and
range reduction  calculations,  which  can  reduce  the  variable  bounds  and  therefore  improve  the  conver-
gence  rate  and expedite  the  solution  of  nonconvex  subproblems.  Novel  customized  bound  contraction
problems  are  proposed  for  GBD  and  NGBD,  and they  are easier  to solve  than  the classical  bound  contrac-
tion  problems  because  they  are  defined  on  reduced  variable  spaces.  The  benefits  of  the  proposed  methods
are  demonstrated  through  a  gas  production  operation  problem  and  a power  distribution  system  design
problem.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Global optimization for nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) has been applied widely
to various engineering problems, ranging from product distribution, infrastructure design to process design and control (e.g., Floudas,
1995; Grossmann, 2002; Biegler and Grossmann, 2004). The models of engineering problems, represented by both linear and nonlinear
constraints with continuous or/and discrete decisions, usually lead to nonconvex mathematical programming problems, for which local
optimization methods can fail to find and verify global optimal solutions.

It is well-known that, classical branch-and-bound based global optimization methods suffer from curse of dimensionality (i.e., the
solution time scales exponentially with the problem size in the worst case). Therefore, they are impractical for large-scale problems that
may result from optimization of complex engineering systems or/and explicit consideration of uncertainties. A natural idea to deal with a
large-scale problem is to break the problem into smaller subproblems, which are convex or nonconvex but can be solved efficiently with
branch-and-bound based global optimization. There are two types of decomposition strategies for solving large scale nonconvex problems.
One is Lagrangian decomposition based global optimization (Fisher, 1981; Dür and Horst, 1997; Caroe and Schultz, 1999; Karuppiah and
Grossmann, 2008), which is incorporated in a branch-and-bound framework where only a subspace of the problem is partitioned. The
other is Benders decomposition based global optimization (Benders, 1962; Geoffrion, 1972; Li et al., 2011b), which does not require an
explicit branch-and-bound procedure but requires certain problem structures. In Benders decomposition based global optimization, one
or multiple nonconvex subproblems need to be solved at each iteration, so the efficiency of optimization relies on how fast each nonconvex
subproblem can be solved and how fast the convergence to a global solution can be reached. Benders decomposition based optimization
is well known to be advantageous for scenario based stochastic programming (Birge and Louveaux, 2011), and it has also been applied
to a wide range of deterministic optimization problems, such as process synthesis (Acevedo and Pistikopoulos, 1998), process design and
operation (Li et al., 2011a; Li and Li, 2016; Frank and Rebennack, 2015), circle cutting (Rebennack, 2016), etc.
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Domain reduction techniques can benefit branch-and-bound based global optimization, because they can reduce the search domain,
which result in tighter convex relaxations and reduced number of nodes that are to be explored in the branch-and-bound search.
Tawarmalani and Sahinidis (2004) developed a theoretical global optimization framework based on Lagrangian duality for branch-and-
bound search, and it can be customized to yield a variety of domain reduction techniques in the literature. These domain reduction
techniques can be classified into two types. One type extensively utilizes the primal and dual solutions of convex relaxation subproblems
to reduce the variable ranges, and it does not require solving extra domain reduction subproblems (unless some sort of probing procedure
is needed) (Thakur, 1991; Ryoo and Sahinidis, 1996). The other type requires solving extra convex optimization subproblems to reduce
the variable ranges (Maranas and Floudas, 1997; Zamora and Grossmann, 1999; Castro and Grossmann, 2014). In order to distinguish the
two types of techniques, we call the former range reduction calculation and the latter bound contraction operation.  While bound contraction
operation can usually reduce variable ranges more effectively, it requires much more computing time and therefore cannot be performed
as frequently as range reduction calculation do.

In the light of successful integration of domain reduction in branch-and-bound based global optimization, this paper discusses the
integration of domain reduction in generalized Bender decomposition (GBD, Geoffrion, 1972) and nonconvex generalized Benders decom-
position (NGBD, Li et al., 2011b). At the best of our knowledge, this is the first attempt in the literature to integrate domain reduction in
Benders decomposition based global optimization methods. Customized bound contraction operations and range reduction calculations
are proposed in the paper to accelerate the solution of nonconvex subproblems or/and reduce the number of nonconvex subproblems to
be solved, for GBD and NGBD.

Nonconvex NLPs/MINLPs that can be solved by GBD or NGBD are expressed in the following separable form:

min
z,z0

f1(z) + f2(z0)

s.t. g1(z) + g2(z0) ≤ 0,

z ∈ Z, z0 ∈ Z0,
(P0)

where f1 and f2 are scalar-valued functions, g1 and g2 are vector-valued functions. Note that (P0) can always be rewritten into the following
form:

min
x,y0

cTx

s.t. Ax + By0 ≤ d,

x ∈ X, y0 ∈ Y,
(P1)

where set X = {x ∈  ̋ ⊂ R
nx | (x) ≤ 0} are defined with vector-valued function   :  ̋ → R

m that only contains nonlinear constraints,
set Y = {y0 ∈  ̊ ⊂ R

ny0 |ϕ(y0) ≤ 0} are defined with vector-valued function ϕ :  ̊ → R
mϕ . We  call variables y0 linking variables, given that

(P1) can be separated into a number of relatively easy subproblems if these variables are fixed. Constraint Ax + By0 ≤ d contains all linear
constraints in the problem, including those link x and y0 and those contain only x. The detailed procedure for transforming (P0) to (P1) is
provided in Appendix A.

Obviously, Problem (P1) can be further reformulated into the following form, by introducing extra variables y:

min
x,y,y0

cTx

s.t. y − y0 = 0,

Ax + By ≤ d,

x ∈ X, y0 ∈ Y.

(P)

In this reformulation, the constraints that link y0 and other variables become linear equality constraints that are free from any problem
parameters. We  call these constraints linking constraints in the paper. Due to the linking constraints, y is a duplicate of y0, so its value
has to be within Y. Later we will show that reformulation to (P) is necessary for efficient domain reduction within Benders decomposition
based optimization framework. Therefore, formulation (P) will be considered for the rest of the paper.

Remark 1. (x*, y∗
0) is an optimal solution of Problem (P0) if and only if (x*, y∗

0) is an optimal solution of Problem (P1). (x*, y∗
0) is an optimal

solution of Problem (P1) if and only if (x*, y*, y∗
0) (where y∗ = y∗

0) is an optimal solution of Problem (P).

For convenience of subsequent discussion, we  make the following assumption for sets X and Y:

Assumption 1. Sets X and Y are nonempty and compact.

The remaining part of this paper is organized as follows. Section 2 introduces the classical GBD method and discusses why reduced
variable domain can benefit GBD, and then two bound contraction operations are developed and incorporated in GBD for improved solution
efficiency. Section 3 introduces the standard NGBD method in the context of a multi-scenario version of problem formulation, and develops
customized bound contraction operations and range reduction calculations for NGBD. Section 4 demonstrates the benefits of the proposed
domain reduction methods for GBD and NGBD, through two optimization problems for energy systems. The paper ends with conclusions
in Section 5.
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