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a  b  s  t  r  a  c  t

The  numerical  predictions  of the  hydroelasticity  of  floating  bodies  with  and  without  forward  speed  are
presented  using  a direct  time  domain  approximation.  Boundary-Integral  Equation  Method  (BIEM)  with
three-dimensional  transient  free  surface  Green  function  and  Neumman–Kelvin  approximation  is used  for
the solution  of  the  hydrodynamic  part  and  solved  as impulsive  velocity  potential  whilst  Euler–Bernoulli
beam  approach  is  used  for the  structural  analysis  with  analytically  defined  modeshapes.  The hydro-
dynamic  and structural  parts  are  then  fully  coupled  through  modal  analysis  for  the  solution  of  the
hydroelastic  problem.  A stiff  structure  is  then  studied  assuming  that contributions  of  rigid body  modes
are  much  bigger  than  elastic  modes.  A rectangular  barge  with  zero speed  and  Wigley  hull form  with
forward  speed  are  used  for the  numerical  analyses  and  the  comparisons  of the  present  Istanbul  Technical
University  (ITU)-WAVE  numerical  results  for  response  amplitude  operator,  bending  moment,  shear  force,
etc.  show  satisfactory  agreement  with  existing  experimental  results.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The motion due to the fluid-structure interaction of the floating
bodies with or without forward speed on the sea can be cat-
egorized as rigid body and elastic (or flexural) motions. If the
pressure field around floating body is affected significantly due to
rigid body motions only, the hydrodynamics and structural anal-
yses (which include the complete both diffraction and radiation
fields due to rigid body motion only) are coupled weakly and
performed separately. The weakly coupling of hydrodynamic and
structural analyses implies that the floating bodies under consid-
eration are stiff and the frequencies due to first order wave loads
are much smaller than the eigenfrequencies of elastic deflections.
Furthermore, the structural stiffness is much higher than the hydro-
dynamic restoring which means that elastic motion is considered
to be an insignificant contribution to the hydrodynamic loading.
The weakly coupling also means that the decoupled hydrodynamic
analysis can be performed in either frequency or time domain
where the effect of free surface included [3,4,12,17].

If the structural deformation affects the radiation field signifi-
cantly, the structure and hydrodynamic analyses are fully coupled
and includes hydroelasticity. Hydroelastic analysis implies that the
frequencies due to the first order wave loads fall into eigenfrequen-
cies of the elastic deflections which results in steady state global
elastic vibration known as springing and decrease the fatigue life of
the floating bodies [12,17,33]. Hydroelastic analysis is substantially
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important for larger and high-speed floating bodies. The natural fre-
quency of the larger structures falls into frequency range of the inci-
dent wave frequency whilst in the case of high-speed structures the
increased encounter frequency in which floating body response to
waves approaches the frequency range of the hull-girder vibrations.
In this case, the elastic inertia, stiffness, and damping coefficients
are predicted from a structural analysis and added to the mass, stiff-
ness, and damping matrices in the equation of motion. This implies
that the frequency or time domain analysis includes the radiation
effects due to structural modes in the case of hydroelastic analysis.

A set of modeshapes can be used to define the elastic deflec-
tions of the structures accurately for the structural analysis in air
while this is not the case for floating bodies as the pressure field
around the floating body changes due to radiation field which
results from elastic motion. The change of pressure field affects the
modeshapes which cannot be determined in advance. In this case
the hydroelastic motion of the floating body can be represented by
the superposition of the modeshapes. The structural deflection of
the floating body can be presented by free undamped wet  modes
of the hull by the dry modes of the same structure in air [3] (in
which the different vibration characteristics are taken into account
including torsional and vertical vibrations of floating bodies), or
the orthogonal modes of a uniform beam [9], or the orthogonal
polynomials [33] although the polynomials do not satisfy free-free
boundary conditions at both ends. Structural deflections and rigid
body displacements are all represented by the boundary conditions
of the same form. It is common to represent all of these possible
motions by generalized modes. Each mode may  have a physical
interpretation, like a rigid body mode and a wet or dry beam mode,
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or it may  not, like a Legendre or Fourier mode. It is expected that
the selected modeshapes would represent both rigid and elastic
motions of floating bodies accurately and as the number of modes
increase, the contribution from the higher modes decreases (since
the natural frequencies in these modes are very high compared
to incident wave frequencies and as a result there would not be
interactions between them).

The solution of the hydrodynamic and hydroelastic problems
can be obtained using frequency [3,4] or time domain approaches
[17,19,20,29,30,38] as mentioned above. The body surface con-
sidered as an ensemble of two-dimensional transverse sections
in strip theory and the hydrodynamic forces are obtained by
integrating these sections longitudinally. However, the strip the-
ories [18,23,36] give inaccurate results especially at high Froude
numbers for the low frequency, high forward speed, complex
body shapes, global loads predictions, and end effects (e.g. bow
and stern). The necessity for the accurate prediction of the end
effects and others has given rise to the use of three-dimensional
approaches which uses quadrilateral or triangular panel rather than
strips to model three-dimensional arbitrary floating body shapes.

In the context of linear theory, in both two- and three-dimension
there are two popular kinds of formulations that can be used for
the solution of the hydrodynamic problem. These are Green’s func-
tion formulations [12,22,26,27] or Rankine type source distribution
[2,21,31]. The former satisfies the free surface boundary condition
and condition at infinity automatically, and only the body surface
needs to be taken into account for discretization, while in the latter
source and dipole singularities are distributed on both the body sur-
face and a portion of the free surface in order to satisfy the radiation
condition or condition at infinity numerically. The main disadvan-
tage of the Rankine type source distribution is the stability problem
for the numerical implementation, since the radiation condition or
condition at infinity is not satisfied exactly or automatically. The
requirement of the discretization of some portion of the free sur-
face increases the computational time substantially in the case of
especially three-dimensional analysis. The time domain and fre-
quency domain numerical results are related by Fourier Transform
in the context of linear analysis. It appears that in both time domain
and frequency domain it is an advantage to use the Green’s function
approach for computational and practical purposes. As the exten-
sion of the time domain approach to more general cases, such as
non-constant forward speed case, large amplitude body motion,
water on deck, unsteady manoeuvres of the body surface, non-
linear cable forces, etc., is much easier than the frequency domain
approach.

The structural part of the hydroelastic analysis can be mod-
elled using one-dimensional beam elements [3,6,40,41] (e.g.
Euler–Bernoulli, Timoshenko, Vlasov beams), two-dimensional
plate elements [17] (Kirchhoff or Mindlin plates), and three-
dimensional shell elements [21] to obtain the elastic resultants (e.g.
principal modes, natural frequencies, bending moments, twisting
moments, shear force, etc.) by the use of Finite Element Methods
(FEM) for the prediction of elastic resultant numerically including
eigenvalues and eigenvectors. The interface boundary conditions
due to interaction between deformable structure and fluid motion
can be obtained [3,4,33,37] extending Newman’s [32] unified the-
ory results for hydroelastic analysis.

In the present paper, Euler–Bernoulli beam theory (in which the
modeshapes and its derivatives are obtained analytically) is used to
model the elastic behaviour of the floating structures whilst fluid
boundaries described by the use of Boundary Integral Equation
Methods (BIEM) with Neumann–Kelvin linearization. The exact
initial boundary value problem is then linearized using the free
stream as a basis flow and replaced by the boundary integral equa-
tion applying Green theorem over three-dimensional transient free
surface Green function [12–17]. The resultant boundary integral

equation is discretized using quadrilateral elements over which the
value of the potential is assumed to be constant and solved using the
trapezoidal rule to integrate the memory part of the transient free
surface Green function in time. The free surface and body boundary
conditions are linearized on the discretized collocation points over
each quadrilateral element to obtain algebraic equation. The accu-
racy of the present hydroelastic method is assessed by comparing
the results with the available experimental data [1,28].

2. Linearized initial-boundary value problem

A right-handed coordinate system is used to define the fluid
action and a Cartesian coordinate system �x = (x, y, z) is fixed to the
body which is used for the solution of the linearized problem in the
time domain Fig. 1. Positive x-direction is towards the bow, positive
z-direction points upwards, and the z = 0 plane (or xy plane) is coin-
cident with calm water. The body is translating through an incident
wave field with velocity U0 while it undergoes oscillatory motion
about its mean body position. The origin of the body-fixed coordi-
nate system �x = (x, y, z) is located at the centre of the xy plane. The
solution domain consists of the fluid bounded by the free surface
Sf(t), the body surface Sb(t), and the boundary surface at infinity S∞
Fig. 1 [12].

The following assumptions are taken into account in order to
solve the physical problem. If the fluid is unbounded (except for the
submerged portion of the body on the free surface), ideal (inviscid
and incompressible), and its flow is irrotational (no fluid separa-
tion and lifting effect), the principle of mass conservation dictates
the total disturbance velocity potential ˚(�x,  t). This velocity poten-
tial is harmonic in the fluid domain and is governed by Laplace
equation everywhere in the fluid domain as ∇2˚(�x, t) = 0 and the
disturbance flow velocity field �V(�x, t) may  then be described as the
gradient of the potential ˚(�x, t) (e.g. �V(�x, t) = ∇˚(�x, t)).

In the present paper, it is assumed that the fluid disturbances
due to steady forward motion and unsteady oscillations of the float-
ing body are small and may  be separated into individual parts for
the linearized problem. In addition to the separation of the fluid dis-
turbance into steady and unsteady part, the free surface boundary
condition, body boundary condition, and Bernoulli’s equation may
be linearized. In the steady problem, the body starts its motion at
rest and then suddenly takes a constant velocity U0 parallel to free
surface. After some oscillation all transients are allowed to decay
to zero for the steady problem which gives rise to the calculation
of the steady resistance, sinkage force, and trim moment [12,14].
Then the unsteady problem [12,13], which consists of radiation and
diffraction analyses, is solved, when the body is in its equilibrium
position. Because of the small disturbance of the fluid, the total
velocity potential produced by the presence of the floating body in
the fluid domain may  be separated into three different parts Eq. (1)

˚(�x,  t) = ϕbasis(�x) + ϕsteady(�x) + ϕI(�x, t) + ϕS(�x, t)

+
K∑
k=1

ϕk(�x, t) (1)

where K = 1, 2, 3, . . . is the degree of freedom of the fluid-structure
interaction system which is greater than the number of rigid
body motion. The steady problem is the combination of ϕbasis(�x)
and ϕsteady(�x) potentials due to the steady translation of the
floating body at forward speed U0. The incident potential ϕI(�x, t) is
produced when the steadily translating floating body meets with
an incident wave field. If the incident wave is reflected by the
floating body, the resultant potential is the scattering potential
ϕS(�x, t) and comprises the diffraction potential. The solution of
the incident wave potential and diffraction potential is called
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