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a  b  s  t  r  a  c  t

Finite  state  Markov  Decision  Processes  (MDP)  for process  control  are  considered.  MDP  provide  robust
tools to  perform  optimization  in closed-loop,  and  their  finite  state  description  enables  an  easy imple-
mentation  of Bayesian  state  estimation.  An  approach  to  tackle  the  curse  of  dimensionality  problem,  yet
retaining  the  benefits  of  the  finite  state  MDP  in control  and  estimator  design,  is  proposed.  The  suggested
approach  uses  iterative  re-discretization  based  on  clustering  of  closed-loop  data.  An  efficient  modifica-
tion  of  the  k-means  clustering  technique  is proposed.  The  performance  of the  approach  is  demonstrated
using  a challenging  benchmark  from  chemical  engineering,  the  van  der  Vusse  continuous  stirred  tank
reactor  control  problem.  It  is shown  that  the  requirements  of  the  benchmark  are  met,  and  that  the sug-
gested  iterated  clustering  significantly  improves  the  performance.  It is concluded  that  the  finite  state
MDP approach  is  a viable  alternative  for small-to-medium  scale  problems  of  practical  process  control
and  state  estimation.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Finite Markov chains and dynamic programming are power-
ful tools for design and analysis of dynamic systems. There is a
breathtaking literature on finite Markov chains, dynamic program-
ming, and Markov Decision Processes (MDP): (Kemeny and Snell,
1960; Puterman, 1994; Bertsekas, 2005; Poznyak et al., 2000; Hsu,
1987) just to mention a few. MDP  have found a lot of applica-
tions in the area of robotics, computer sciences and operations
research (Powell, 2010; Lee and Lee, 2004, 2006; White, 1989).
Markov Transition Models (MTM)  have been proposed for process
engineering and biochemistry (Tamir, 1998; Pande et al., 2010;
Berthiaux and Mizonov, 2004) and process control (see e.g. Ikonen
and Najim, 2009; Negenborn et al., 2005), but the MDP have largely
been considered unpractical by the process control community due
to that the computational and storage requirements with almost
all problems of practical interest have remained unwieldy (Lee
and Lee, 2004). Instead, Model Predictive Control (MPC) has been
the main paradigm in advanced process control during the past
decades.

Indeed, process control and state estimation problems have
characteristics which distinguish them from the decision making
problems in many other fields (Lee and Lee, 2004; Ikonen and
Najim, 2002):
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• multivariate problems with high dimensional state spaces,
• continuous state, action and measurement spaces, with unmea-

surable internal states,
• mild non-linearities (smooth or appear as few discontinuities),
• heavily constrained systems,
• long delays,
• availability of rough process models, with a strong physical back-

ground,
• expensive experimentation (large-scale systems running in pro-

duction),
• redundancy in measurements,
• low sampling rates, multiple sampling rates,
• substantial on-site tuning due to uniqueness of local conditions

and products, and
• competing sets of performance objectives.

Clearly, this type of characteristics differ from those encountered,
e.g.,  in the field of economics (lack of reliable models), robotics (very
precise models are available, trial-and-error learning is feasible to
some extent), consumer electronics (mass production of low cost
products), telecommunication (extensive use of test signals, fast
sampling), or academic toy problems (complex multimodal deter-
ministic test functions).

MPC  relies on open loop optimization that is conducted on-
line. The optimization minimizes a cost function defined over a
finite future horizon, and results in an optimal sequence of future
control actions. Following the receding horizon principle, only the
first (immediate) control action from the sequence is applied and
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the optimization is repeated at the next control instant. The over-
whelming success of MPC  in practical process control can largely
be addressed to the possibility to solve dynamic multivariable con-
strained optimization problems, taking into account disturbances
in a feed forward fashion. Adding the possibility to deal with long
delays (due to the use of the prediction horizon), and having an
option to express the costs in terms of economical quantities, the
MPC  indeed provides a tempting methodology for dealing with
practical problems of process control.

The controlled finite Markov chains (aka Markov Decision Pro-
cesses) are close relatives to MPC. Both MDP  and MPC  are based on
numerical optimization, and their success relies fundamentally on
the availability of good process models. It is well known that the
MDP  suffer from curse-of-dimensionality (Powell, 2010). For a vast
majority of problems, the state of a system is a vector, and the size
of the state space grows very quickly as the number of dimensions
grow. For example, if each continuous process state variable xi of
a state vector x = [xi] ∈ Rnx would be approximated by Z different
values, the number of state cells S in a finite state system would
grow exponentially with nx, S = Znx . However, MDP  also provide
remedies for the fundamental problems of MPC  (Lee and Wong,
2010). In particular, the optimization in MDP  concerns closed-loop
performance, and can naturally take into account stochastic uncer-
tainties in various system components. In addition, the design is
conducted off-line, no on-line optimization of control sequences is
required.

Some of the above-mentioned characteristics of process control
problems favor the use of Markov chains, while others do not. The
size of the finite state and action spaces is a good measure for the
main limiting constraints, the memory requirements and compu-
tational complexity. The need to work with multivariate problems
in high dimensional state spaces is certainly discouraging; the
requirement to deal with continuous spaces seems impossible with
MDP  unless one turns into approximate dynamic programming.
The cost of real-life experimentation rules out any large-scale use
of machine learning techniques for learning the required mappings
from data. On the other hand, constraints can easily be dealt with
via penalization and long delays and other complicating dynamics
present a priori no problem as they can be included in the plant
models. Availability of plant models for many industrial processes
of practical significance is a strong argument favoring the use of
Markov chains, as these techniques enable to take into account
not only plant state and measurement noises but also modeling
errors. Redundancy in measurements, again, favors the use of tech-
niques taking the uncertainties seriously. The possibility to use
Bayesian state estimation makes a maximal benefit from redundant
measurements, and an exact implementation of Bayesian filters
is possible with finite state descriptions (Ungarala et al., 2006;
Kaelbling et al., 1996). As most of the computations are conducted
off-line, fast sampling rates can be considered.

Approximate dynamic programming (ADP) (see Lee and Lee,
2004, 2006; Lee and Wong, 2010; Powell, 2010, 2009; Selek
et al., 2013 and references therein) is a loose group of techniques
pursuing large-scale applications. The basic idea is to rely on the
dynamic programming, but to avoid excessive simulations by using
sample paths and forward dynamic programming. Parametrized
or nonparametric function approximations are used to directly
approximate the cost-to-go’s at states not evaluated by simulation.
In fact, one can build function approximation from continuous
domains and avoid the discretization and explicit building of the
MTM  transition probabilities altogether. At first sight, this looks
very tempting. However, a significant fraction of the power of
the MDP  methodology is lost, which can be addressed to the lack
of the transition probability matrices. The finite state Markov
chain representation provides a powerful model of propagation
of the system uncertainties, as well as means for analysis of the

nonlinear dynamics of both open and closed-loop systems. In
many ADP approaches, learning by simple counting is traded to
function approximation which easily makes model identification
and validation cumbersome. In addition, ADP focuses on solving
the optimal control problem, so state estimation does not come
with the methods but needs to be designed separately. However,
the ADP enables the use of dynamic programming for large-scale
optimization problems (in the sense of large number of finite
state cells, and/or approximation of high dimensional continuous
spaces), and has been reported to provide useful practical results
in reasonable time in a number of applications.

This paper focuses on the use of finite state Markov chains
for process control. In order to apply MDP  for problems of prac-
tical interest, a simple but powerful idea from ADP is borrowed:
focusing only in state space of interest in closed-loop control (Lee
and Lee, 2006). In order to find this part of the state space, it is
suggested that clustering of closed-loop data is performed itera-
tively during the design. Clustering is used for discretization of the
continuous state space of the process, and the reminder of the con-
troller and state estimator design and analysis is based on finite
state/action MDP  techniques. The approach is termed Finite ADP
(FADP). The idea of using clustering for discretization (partition-
ing) is well-known and widely used in the literature of artificial
intelligence, including Markov models (Pande et al., 2010) even if
fixed grids (rectangular, hexagonal) are much more commonly used
with MTM.  The suggested approach contains several components
similar to those discussed by Yang and Lee (2010), in particular
in that clustering is used with MDP  in order to solve a process
control problem. However, Yang and Lee consider small MTM  (less
than 102 state cells in their examples) and consequently are able
to propose a more complex clustering of simulated/historical data
series, based on Kohonen’s self organizing map  and ‘outlier treat-
ment’. The FADP aims at a much larger number of state cells (of the
order of 104 . . . 105) using a modified k-means algorithm for clus-
tering, and independent one-step-ahead simulations for building
the MTM.  Most importantly, Yang and Lee aim at constructing an
additional RTO-level above linear MPC  controllers, while this paper
develops these ideas toward a systematic method for practical
model-based design of optimal process controllers, emphasizing
off-line optimization of the underlying stochastic system’s closed-
loop performance.

Section 2 introduces modeling, control and state estimation
with finite state Markov chains. The main contributions of the paper
are given in Section 3, which proposes a novel Finite ADP  (FADP)
algorithm for process control and state estimation design. The FADP
requires a fast clustering algorithm, and a hierarchical k-means
algorithm is proposed as a secondary contribution of the paper.
The Appendix provides a brief analysis of the properties of this
clustering technique. Section 4 gives a thorough illustration of the
approach using a well known and easily reproducible MPC  bench-
mark example, the van der Vusse CSTR control problem (Chen et al.,
1995). The paper ends with discussion and conclusions.

2. Process modeling, state estimation and control in finite
spaces using Markov chains

This section reviews modeling, state estimation and control
with finite state controlled Markov chains, to the extent needed
in Section 3 to describe the suggested MDP  with iterative re-
discretization. Control with Markov chains is based on a state space
description of the plant

x(k + 1) = f (x(k), u(k), w(k)) (1)

y(k) = h(x(k), v(k)) (2)
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