Computers and Chemical Engineering 93 (2016) 309-322

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

A parallel function evaluation approach for solution to large-scale
equation-oriented models

@ CrossMark

Yannan Ma?, Zhijiang Shao?, Xi Chen®*, Lorenz T. Biegler®

a State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
b Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

ARTICLE INFO ABSTRACT

Article history:

Received 15 January 2016

Received in revised form 6 June 2016
Accepted 12 July 2016

Available online 14 July 2016

The equation-oriented (EO) approach is widely used for process simulation and optimization. Never-
theless, large-scale EO models consist of a huge number of nonlinear equations and make the solution
procedure a challenging and time-consuming task. For most gradient-based numerical algorithms, func-
tion evaluations are the dominant step during the solution procedure. Here, a parallel computation
method is developed for function evaluations within EO optimization strategies. After dividing the equa-
tions into several groups, function evaluations are calculated by using multiple threads on a parallel
hardware platform simultaneously. Theoretical analysis for the speedup ratio is conducted. The imple-
Function evaluation mentation of the proposed method on a multi-core processor platform as well as a graphics processing
Parallel computing unit (GPU) platform is then presented with several case studies. Numerical results are compared and
GPU discussed to show that the multi-core processor implementation has good computational performance,
Multi-core processor whereas the GPU implementation only achieves computational acceleration under relatively specific

Keywords:
Equation-oriented model

conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Process simulation and optimization is an essential task to
analyze the process productivity, product quality, and plant per-
formance in a reliable, environmental, and economical way. Due
to the complexity of the physicochemical phenomena in reactions
and the nonlinearities arising from their mathematical models, the
simulation and optimization task in chemical processes remains
complicated and challenging.

Both in industry and academia, two well-established
approaches are widely applied to design and optimize sys-
tems, especially for large-scale systems. The first approach is an
object-oriented approach, where the solution procedure is tied to
the model. For steady-state process simulation and optimization,
this usually appears as the sequential modular (SM) approach,
where process modules are connected by streams according to
process topology and solved iteratively by “tearing” the recycle
streams, in which an optimizer is coupled with a simulator. In this
approach, modules are relatively easy to construct and generalize
because of the tailored procedures for the blocks. Nevertheless, the
module models need to be solved repeatedly and parallelization
is strongly influenced by flowsheet structure. Also, caution is

* Corresponding author.
E-mail address: xichen@iipc.zju.edu.cn (X. Chen).

http://dx.doi.org/10.1016/j.compchemeng.2016.07.015
0098-1354/© 2016 Elsevier Ltd. All rights reserved.

required to prevent potential intermediate module failures during
simulation and optimization. Another drawback is that exact
derivatives for the implicit unit models are not directly available,
leading to inaccuracy and round-off errors with the replacement
by finite differences.

The second approach is the equation-oriented (EO) approach. All
equations and variables that describe the unit operations are simul-
taneously solved. Compared to the SM mode, this approach requires
more efforts on modeling and initialization by the user. However
in the EO mode, exact derivatives are directly available and round-
off errors in gradients are avoided. Thus, EO formulations directly
exploit advances in large-scale nonlinear programming (NLP) algo-
rithms (Dowling and Biegler, 2015). Generally, it is preferred for
complex flowsheets with many nested recycle loops and implicit
design specifications.

Numerous research efforts have been made to improve EO
methods to deal with process simulation and optimization. To con-
duct kinetic parameter estimation and productivity optimization
on an industrial high-density polyethylene (HDPE) slurry process
with specified molecular weight distribution (MWD), Zhang et al.
(2013) established and solved a complete EO model, including
rigorous kinetic mechanism and thermodynamics. Pattison and
Baldea (2015) developed a robust EO modeling and optimization
framework to compute stream temperatures for multi-stream heat
exchangers. Huang et al. (2009) applied the advanced step nonlin-
ear model predictive control (asNMPC) on a rigorous dynamic EO


dx.doi.org/10.1016/j.compchemeng.2016.07.015
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.07.015&domain=pdf
mailto:xichen@iipc.zju.edu.cn
dx.doi.org/10.1016/j.compchemeng.2016.07.015

310 Y. Ma et al. / Computers and Chemical Engineering 93 (2016) 309-322

model of air separation units to reduce the online computational
delay. Fu et al. (2015) conducted process analysis and optimiza-
tion of a cryogenic air separation unit using a complete EO model
to achieve satisfactory convergence performance. Kamath et al.
(2010) proposed a novel general EO approach for selecting the
appropriate root of the cubic equation of state by incorporating
derivative constraints specific to the desired phase. Although the
EO approach has distinct advantages in simultaneous optimization
and convergence efficiency, its solution procedure for large-scale
models could still require considerable computational effort. The
time consumption is always considered as a key performance indi-
cator for real-time optimization in operations. For example, a rapid
and efficient search is required to generate a new operation point
in the circumstance of frequent fluctuations in product demand.
Compared with conventional serial computing, parallel computing
takes more effort and time for its algorithm design, but achieves
much more significant acceleration effect.

Parallel computing requires multiple tasks to perform simul-
taneously (Almasi and Gottlieb, 1989). As the improvement of
single-processor computing has slowed, an increasing amount of
work is being conducted to take full advantage of parallel com-
puting in industrial engineering problems. Weng et al. (2015)
implemented a multi-thread parallel strategy to compute the MWD
of the multisite free-radical polymerization. Velez and Maravelias
(2013) developed a parallel branch-and-bound algorithm for a
chemical production scheduling problem using a discrete-time
model. Fesko (2012) considered a parallel algorithm and achieved a
significant gain in speed for computing an initial approximation to
the optimal control problem. For the graphics processing unit (GPU)
computing platform, the large-scale simulation and optimization
of chemical process is a recent application area. Zhang et al. (2011)
developed a parallel implementation of the algorithm that utilizes
modern GPU technology for Monte-Carlo-based risk assessment
in CO, sequestration. Lu et al. (2014) proposed a coarse-grained
discrete particle method to simulate hydrodynamics of gas-solid
flows, which takes full advantage of CPU-GPU hybrid supercompu-
ting. Klimes and St&tina (2015) presented a rapid GPU-based heat
transfer and solidification model for continuous steel casting, the
performance of which makes it suitable for real time applications
in casting control and optimization. Most researchers develop par-
allel computation methods based on a specific chemical process
itself. However, few papers exploit the structure of general-purpose
numerical algorithms and parallelize the solution procedure of
diverse large-scale EO models. On the other hand, there has been
little specific effort in GPU-based general-purpose parallel solution
strategies, due to the fact that NLP algorithms do not have enough
synchronized and independent execution thread paths, which are
favored by the parallel computation on GPUs. Nevertheless, GPU is
especially effective in algorithms that are characterized by a large
number of floating point operations per memory data transfer.

In this study, we propose a parallel computation method to
solve large-scale EO models. Under the framework of Successive-
Quadratic-Programming (SQP)-based algorithm, this method
allows its function evaluation task to be executed using parallel
threads that communicate with the main solution procedure. Its
implementation is developed with both multi-core processor as
well as GPU technology. A number of case studies are presented
to illustrate the performance of the proposed method on both
platforms. Finally, guidelines are given for selecting applicable plat-
forms based on the model characteristics.

2. Parallel computation method to function evaluation

According to the EO formulation, detailed process steady-
state and dynamic behaviors can be described by a rich set of

nonlinear models. Associated with a scalar quantitative perfor-

mance measures to be minimized or maximized, a typical NLP

problem is developed. The general form of an NLP problem can be

given as:
minf(x)

X
st glx) < (M
h(x) =

where x is an n-dimensional vector of continuous variables; f(x)
is a scalar objective function; g(x) is the set of inequality con-
straint functions; h(x) is the set of equality constraint functions.
We assume that f{x), g(x) and h(x) all have continuous first and sec-
ond derivatives. Great progress in finding NLP solutions makes the
ability to solve large-scale process optimization models cheaply. In
particular, gradient-based NLP algorithms have made the formu-
lation and solution of large-scale EO models accessible to a much
wider user base (Biegler, 2010).

2.1. Function evaluation in gradient-based NLP methods

For constrained optimization, the basic idea of gradient-based
NLP methods is to consider a modified equation set of the
Karush-Kuhn-Tucker (KKT) conditions from the original models
(Biegler et al., 1997). Then, these equations can be solved with a
Newton-based method, with a set of linear equations solved at
each iteration to define the Newton step. The Newton step from
the iterate (x*, ¥, A¥) can be given by:

VXL(Xk, Mk’ )\k)
ga(x*) 2)
h(x%)

By Vga Vh d
vel 0 0
VhT 0 0

Ap | =-—
AA

where L(x,u,A) is the Lagrangian function of (1) with the Lagrange
multipliers ©« and A; By is the Hessian of the Lagrange function
VxxL, Or its approximation; g4(x) is made up of the active inequal-
ity constraints if the optimal active set can be identified correctly
in advance; d is the predicted search direction; Apu =k — uk,
AX=21*1_ )k The next point x¥*1 =xk+ad, where the step size
« is determined so as to reduce a penalty function that balances
the decrease of the objective function and the violation of the con-
straints.

Typically, we need to perform a function evaluation, i.e., to eval-
uate the values of objective and constraint functions, and their first
derivatives and second derivatives (or their approximations) for
the coefficients in Eq. (2) of Newton step at the current iterate
(xk,uk 1K), After the function evaluation step, the updating proce-
dure of a specific NLP algorithm is conducted to generate a new
iterative point.

To further illustrate the function evaluation, we take the
Sequential Quadratic Programming (SQP)-type method as an exam-
ple. The SQP method has emerged as an efficient algorithm for
process optimization. It inherits fast convergence properties from
Newton’s method and can be tailored to a wide variety of problem
structures (Biegler et al., 1997). The basic idea of the SQP method
is to model (1) at the current iteration point xX by a quadratic pro-
gramming subproblem:

minV(x* Yd+ %dTBkd
s.t. h(x*)+ Vh(x*)'d =0 3)

2(x) + Vg(x)'d <0

The solution of the quadratic program (3) is equivalent to the
Newton step in Eq. (2). By solving this subproblem, a new point



Download English Version:

https://daneshyari.com/en/article/171998

Download Persian Version:

https://daneshyari.com/article/171998

Daneshyari.com


https://daneshyari.com/en/article/171998
https://daneshyari.com/article/171998
https://daneshyari.com

