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a  b  s  t  r  a  c  t

This paper  is concerned  with  the  linear  hydroelastic  response  of  a pontoon-type  very  large  floating  struc-
ture (VLFS)  in  short-crested  irregular  waves.  The  linear  potential  theory  is  employed  for  the  analysis  of
VLFS in  frequency  domain.  To  decouple  the  fluid–structure  interaction,  the  higher-order  boundary  ele-
ment method  (HOBEM)  combined  with  the  finite  element  method  (FEM)  is  adopted.  VLFS  is modeled  as  a
Mindlin  plate,  and the mode  superposition  method  is  used  to reduce  the  dimension  of  dynamic  equations.
The  pseudo-excitation  method  (PEM)  is adopted  to  analyze  the stationary  stochastic  response  of  the  float-
ing structure.  The  efficiency  of  this  new  calculation  scheme  with  the application  of  PEM  is  investigated
in comparison  with  the  conventional  method  for stochastic  response  by  analyzing  the  computational
complexity  theoretically.  Finally,  the  new  calculation  scheme  is validated  by  comparing  with  the  experi-
mental  data  as well  as  the  existing  numerical  results  calculated  in the conventional  way.  In addition,  the
efficiency  of  the  present  numerical  approach  is also  testified  which  indicates  that  the  proposed  numerical
scheme  is time-saving.

© 2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

The very large floating structure (VLFS) is able to expand the liv-
ing space for human beings. In contrast to the land reclamation from
the sea, VLFS has less impact on the surrounding ecosystem and
costs less. Because of the advantages above, VLFS has been applied
to floating bridges, floating piers, floating fuel storage facilities, and
the floating airport model Mega-Float, etc. [1].

Generally, the height of VLFS is only a few meters, which is
much smaller than its horizontal dimensions. Therefore, VLFS is
usually modeled as a floating plate for simplicity, and it is nec-
essary to consider the hydroelasticity of the structure, which
allows for the interaction between the floating elastic body and
water waves. Most hydroelastic analyses of VLFS are carried out in
regular waves in frequency domain. For linear hydroelastic anal-
yses, the hydrodynamic loads and the dynamic response of the
floating structure can be dealt with separately, i.e., firstly the hydro-
dynamic pressure on the floating structure is generally solved by
the boundary element method (BEM), and then the response of the
floating structure under the pressure is calculated. Several meth-
ods have been used to deal with the deformation of the structure,
including the Galerkin method [2,3] combined with the “general-
ized mode” proposed by Wu [4] and Newman [5], and the mode
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superposition method consisting of the wet  mode approach [6] and
the dry mode approach [7,8], of which the dry mode is obtained
by the finite element method (FEM). Different from the methods
above, Meylen [9] proposed a variational equation for a floating
thin plate subjected to wave forces, which combines the varia-
tional equation of the plate with the free-surface Green function
method together. BEM can generate an unsymmetrical full matrix,
which is difficult to deal with. In addition, irregular frequencies are
present if the free-surface Green function is used. Therefore, some
other methods are proposed for solving the fluid motion around
VLFS, including FEM [10,11] and the hybrid finite/infinite element
method [12]. However, it is difficult to analyze the hydroelastic-
ity of VLFS using BEM or FEM for the huge horizontal dimensions
of the floating structure. Therefore, analytical methods, and semi-
analytical methods using eigenfunctions have been widely used for
the study of pontoon-type VLFSs of simple geometries and small
drafts [13–16], as these methods are less time-consuming and more
efficient in the parametric study of the hydroelastic response. In
recent years, several computer codes for the hydroelastic analysis
of VLFS have been developed, and a detailed comparative study of
the simulation results from them was  carried out by Riggs et el.
[17].

In general, the floating bodies in actual engineering are of com-
plex geometries; in this case, the conventional BEM is generally
employed for the hydrodynamic computation of VLFS, but the
required computations are extremely huge. To deal with the prob-
lem in the computation, some studies of efficient computation
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have been carried out. Wu et el. [18] proposed the double com-
posite singularity distribution method for the hydroelastic analysis
of a floating structure which has two planes of symmetry and
nearly 75% of the total equations can be reduced. Wang et el. [19]
introduced a cut-off criterion for the Green function and its deriva-
tives to convert full matrices formed by BEM into sparse matrices,
and then applied an iterative sparse solver to the calculation of
sparse matrices to reduce the CPU time. Kashiwagi [3] adopted
bi-cubic B-spline functions to represent the unknown pressure,
and employed “relative similarity relations” to evaluate the coef-
ficient matrix formed by the pressure-distribution method, which
can reduce the computational time drastically with a small number
of unknowns required only. Recently, another two  fast algorithms,
namely the pre-corrected Fast Fourier Transform (pFFT) method
and the fast multipole method (FMM), have been applied to the
acceleration of BEM and make it possible to study the hydrody-
namics of large floating structures of general geometries. The pFFT
method has been applied to the analysis of the Mobile Offshore Base
(MOB) [20,21] and can reduce the computational time and mem-
ory cost for BEM from the order O(N2) to O(N log N). Utsunomiya
et el. [22,23] have developed another form of the higher-order
boundary element method (HOBEM) accelerated by FMM,  which
can reduce the storage requirement and CPU time to O(N) and
O(N log N), respectively.

Some investigations have been carried out on the stochastic
hydroelastic analysis of VLFS for a reliable design, which will be sub-
jected to irregular waves during its whole service life. Hamamoto
[24] analyzed the stochastic response of a circular floating island
subjected to wind-induced waves under both long-term and short-
term descriptions of loadings, of which the short-term description
of external loadings was represented by spectral density func-
tions. Chen et al. [25,26] carried out the research on the second
order response of VLFS induced by coupling of first-order wave
potentials or the membrane force of the plate in multidirectional
irregular waves. Ertekin et el. [27] investigated the hydroelastic
response of a pontoon-type VLFS sheltered by a breakwater in
regular and irregular waves based on the linear Green–Naghdi the-
ory and the eigenfunction-expansion matching method. Using the
same method as Ref. [12], Miyajima et el. [28] analyzed the hydroe-
lastic response of the Mega-Float Phase-II model in short-crested
irregular waves and compared their results with the measured
values. Refs. [27,28] adopted the formula for linear systems of
single degree of freedom (SDOF) to evaluate the response spec-
trum of VLFS, which means that the cross-correlation between
responses of any two points of the floating structure is neglected,
and only approximate results can be obtained in this way. Recently,
Papaioannou et el. [29] studied the linear stochastic response of
VLFS subjected to a directional wave spectrum by the station-
ary random vibration theory, which is an accurate method to
the stochastic analysis of systems of multiple degrees of freedom
(MDOF) without any cross-correlation terms neglected.

However, the response spectra of VLFS are quite difficult to cal-
culate due to the computations of O(N3) by the stationary random
vibration theory, in which case the required number of unknowns
N is huge. In recent years, Lin et el. [30,31] have developed the
pseudo-excitation method (PEM), which is efficient in dealing with
stochastic responses of linear systems of large degrees of freedom,
and has been applied to stochastic analyses of long-span bridges,
high-speed trains [32], and the fatigue damage of the deepwater
riser [33], etc.

In this study, we adopt PEM to study the linear hydroelasticity
of a pontoon-type VLFS subjected to short-crested irregular waves
in frequency domain. VLFS is modeled as a Mindlin plate with
allowance for the effect of transverse shear deformation and rotary
inertia. The fluid motion is solved by HOBEM, and the deformation
of the floating structure is calculated by the mode superposition

Fig. 1. The schematic diagram of the fluid–structure interaction problem.

method, of which dry modes of the structure obtained by FEM are
chosen. A directional wave spectrum is used for the short-term
description of short-crested irregular waves. The efficiency of this
calculation scheme with the application of PEM is discussed the-
oretically and verified by a numerical example at the end of this
paper. Finally, the accuracy of the present method is also verified
by comparing our numerical results with the experimental data as
well as the existing numerical results obtained by the stationary
random vibration theory. Some meaningful conclusions about the
present calculation scheme are proposed.

2. Hydroelastic analysis of VLFS

In this section, the linear hydroelasticity of VLFS in regular waves
is analyzed in frequency domain. The schematic diagram of the
fluid–structure interaction problem is shown in Fig. 1. The pontoon-
type VLFS is defined with length L, width B, height T, and modeled
as a floating plate assumed to be flat with free edges. A zero-draft
assumption is adopted for simplicity. The symbols ˝,  Sf, Sb and Sd
denote the fluid domain, the free surface, the bottom surface of
the structure and the flat seabed, respectively. Three-dimensional
Cartesian coordinate system o-xyz is established with o-xy plane
coinciding with the undisturbed free surface and z-axis orienting
positively upwards.

2.1. Equations of motion for the plate

The height of VLFS is much smaller than its length and width, so
the floating structure is usually modeled as a Kirchhoff plate which
does not allow for transverse shear deformation. It is accurate to
use the Kirchhoff plate theory when the plate is homogeneous and
thin, in which case the effect of shear deformation is of no sig-
nificance. However, if VLFS consists of different kinds of materials
which behaves like sandwich plates, the effect of shear deformation
cannot be neglected. In addition, when analyzing the wave-induced
transverse shear force of VLFS, Gao et al. [8] found that the max-
imum shear force obtained by the Mindlin plate theory is about
10% larger than the one by the Kirchhoff plate theory. Therefore, in
this study we model VLFS as an isotropic Mindlin plate for a more
accurate evaluation of shear forces of the structure.

The displacements of a Mindlin plate are given as [34]

UP(x, y, z, t) = z�y(x, y, t) (1a)

VP(x, y, z, t) = −z�x(x, y, t) (1b)

WP(x, y, z, t) = W(x, y, t) (1c)

where UP, VP, and WP denote the displacements along x-axis, y-axis,
and z-axis, respectively. �x, �y represent the rotations about x-axis
and y-axis, respectively, and W is the vertical displacement of the
neutral surface of the plate.
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