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a  b  s  t  r  a  c  t

In  many  experimental  settings,  one  is tasked  with  obtaining  information  about  certain  relationships  by
applying  perturbations  to  a set of independent  variables  and noting  the  changes  in  the  set  of dependent
ones.  While  traditional  design-of-experiments  methods  are  often  well-suited  for  this,  the task  becomes
significantly  more  difficult  in the  presence  of  constraints,  which  may  make  it  impossible  to  sufficiently
excite  the  experimental  system  without  incurring  constraint  violations.  The  key contribution  of  this  paper
consists  in  deriving  constraint  back-off  sizes  sufficient  to  guarantee  that  one  can  always  perturb  in a ball
of  radius  ıe without  leaving  the  constrained  space,  with  ıe set by the  user.  Additionally,  this  result  is
exploited  in  the  context  of experimental  optimization  to propose  a constrained  version  of  G. E. P.  Box’s
evolutionary  operation  technique.  The  proposed  algorithm  is applied  to three  case  studies  and  is shown
to  consistently  converge  to the  neighborhood  of  the optimum  without  violating  constraints.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In most branches of science, one often encounters systems
where the relationship between some experimental response and a
finite number of independent variables needs to be studied (Myers
et al., 2009; Montgomery, 2012), and it is generally assumed that
the response is a dependent variable and a function of the inde-
pendent ones. Mathematically, the experimental quantity may  be
stated as the function f : R

nu → R, while u ∈ R
nu may  be used to

denote the vector of independent variables u = (u1, . . .,  unu ). One is
then left with the task of identifying f(u). The identification may  be
either local or global, and is usually done by conducting a series of
experiments with different values of u, observing the resulting f(u)
values, and performing some sort of regression. Such procedures
are typically used to:

(i) construct data-driven model approximations of f for when f is
difficult to model via first principles (Jones et al., 1998; Myers
et al., 2009; Montgomery, 2012),

(ii) estimate the uncertain parameters of an already available
model (Box, 1990; Chen and Joseph, 1987; Pfaff et al., 2006;
Quelhas et al., 2013),

(iii) explore how the function value changes so as to find conditions
for which the value is minimized, maximized, or equal to a
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certain quantity (Robbins and Monro, 1951; Box and Wilson,
1951; Lewis et al., 2000; Conn et al., 2009).

It is the case for many problems that the experimental space
of interest is a box defined by the constraints uL

i
≤ ui ≤ uU

i
, i =

1, . . .,  nu, where uL = (uL
1, . . .,  uL

nu
) and uU = (uU

1 , . . .,  uU
nu

) are the
lower and upper limits on the independent variables, respectively.
Such problems typically correspond to simple set-ups that do not
possess major safety limitations, and where testing any variable
combination in the experimental space is permissible. Obtaining
knowledge about f is not difficult in such conditions, and the tradi-
tional design-of-experiments techniques (Montgomery, 2012) are
perfectly appropriate here.

However, there still exists a fair share of problems – many of
them corresponding to continuous or batch chemical processes
(Bunin, 2016) – where additional constraints enter to reduce the
experimental space in a nontrivial manner. These constraints may
be expressed as the ng inequalities

gj(u) ≤ 0, j = 1, . . .,  ng.

In some problems, the functions gj may  represent experimental
relationships that, like f, can only be divined empirically. It often
happens that such experimental constraints are safety or economic
limitations – they could, for example, represent an upper limit
on the temperature in a continuous reactor, or a lower limit on
the purity of a batch-produced chemical. Despite the violation
of such constraints being highly undesirable, or even dangerous,
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there currently exists no easy-to-implement, theoretically rigor-
ous method for guaranteeing that the perturbations carried out on
the system satisfy these constraints.

Notably, there does exist a fairly established literature on
methods that suppose the existence of a parametric model approx-
imation gm,j(u, �) ≈ gj(u), define � as the uncertainty set to which �
belongs, and then attack the problem via probabilistic formulations
by ensuring that gm,j(u, �) ≤ 0 with sufficiently high probability (Kall
and Wallace, 1994; Zhang et al., 2002; Sahinidis, 2004; Li et al.,
2008; Quelhas et al., 2013). However, while such methods are the-
oretically just and robust, they suffer from four major practical
drawbacks:

(i) the requirement of a parametric model,
(ii) the restriction that the uncertainty be parametric, and that �

be known,
(iii) the computational issues that arise with probabilistic con-

straints,
(iv) the conservatism that results from the probabilistic constraints

reducing the set of admissible u.

Drawback (i) becomes debilitating when the system at hand is diffi-
cult to model, while (ii) is more problematic since many employed
models are, often by practical requirement, simplifications and
thereby prone to structural errors (Chachuat et al., 2009). Drawback
(iii) is likely to be significant when the models have many decision
variables, many uncertain parameters, and are involved. Simplifi-
cations, such as linearizing the model with respect to � (Zhang et al.,
2002), may  be used to avoid this, but ultimately come with the loss
of rigor that one would expect from an approximation. Finally, (iv)
can be extremely problematic when the parametric uncertainty set
is large – as may  often occur in practice (Li et al., 2008; Quelhas et al.,
2013) – since this may  limit the perturbation options, with only a
small collection of u being deemed “safe”.

The methodology proposed in the present work avoids these
difficulties while maintaining the rigor. Taking a model-free, back-
off approach, we  simplify and generalize the results of Bunin et al.
(2014a) to derive positive values, bj, that, for a given u*, allow us to
state the guarantee

gj(u
∗) ≤ −bj ⇒ gj(u) ≤ 0, ∀u ∈ Be, (1)

where

Be = {u : ‖u − u∗‖2 ≤ ıe}.

Verbally, this means that given a decision-variable set u* known
to satisfy the constraints with some slack, one is able to provide
a guarantee that the entire ball of radius ıe surrounding u* will
satisfy the constraints as well, thereby allowing the user to per-
turb anywhere within this ball without fear of constraint violation.
Despite being local, such a result is nevertheless very useful as it
allows a high degree of freedom – a ball permitting perturbation
sets of any geometry. As will be shown, the value bj will depend on
the local sensitivities of gj around u*, but can nevertheless be com-
puted without requiring much effort from the user. Conversely, ıe

is the sole tuning parameter set by the user and represents, in some
sense, the magnitude of perturbation considered as “sufficiently
exciting” for identification given the particular problem.

To date, this result has already been integrated into the SCFO
experimental optimization solver (Bunin, 2015), where it is used to
ensure accurate linear and quadratic regression, but it is expected
that the generality of the result make it applicable to many algo-
rithms and contexts. In this paper, its usefulness is illustrated for a
much simpler optimization algorithm – the evolutionary operation
(EVOP) method of Box (Box, 1957; Box and Draper, 1969). As the
original method searches to maximize an experimental function

by perturbing in a hypercube around the best known u, it is made
coherent with the result here by ensuring that the cube lie inside
Be, with u* then defined as the best known reference point. By forc-
ing u* to always satisfy (1), it thus follows that all exploration by
the modified EVOP version satisfy the constraints.

The remainder of this paper is organized as follows. The required
mathematical concepts and the derivation of the appropriate con-
straint back-offs are presented in Section 2. Section 3 then provides
a robust extension of (1) that accounts for noise/error in the
function values, together with a general discussion of potential
implementation issues. The constrained EVOP algorithm is pre-
sented in Section 4, and its effectiveness is illustrated for three
case-study problems. Section 5 concludes the paper.

2. Derivation of sufficient back-offs

So as to keep the forthcoming analysis relatively simple, the
following assumption on the continuity and differentiability of gj
is made.

Assumption 1. The functions gj are continuously differentiable
(C1) on an open set containing Be.

This then allows for the definition of bounds on the sensitivities
of gj.

Definition 1. The local Lipschitz constants of gj are defined as any
constants �ji satisfying

−�ji ≤ ∂gj

∂ui

∣∣∣∣
u

≤ �ji, ∀u ∈ Be. (2)

The existence of these constants follows from Assumption 1 and
the boundedness of Be. They may  be used to bound the violation of
a given gj via the local Lipschitz upper bound.

Lemma  1. Let ua, ub ∈ Be. It follows that

gj(ub) ≤ gj(ua) +
nu∑
i=1

�ji|ub,i − ua,i|. (3)

Proof. See Bunin et al. (2014b). �

Finally, the Lipschitz bound may  be exploited by substituting
ua → u* and ub → u in (3) to generate a Lipschitz polytope around
the point u*.

Definition 2. Let Lj denote the Lipschitz polytope of the constraint
gj around u*, defined as the set

Lj =
{

u : gj(u
∗) +

nu∑
i=1

�ji|ui − u∗
i | ≤ 0

}
. (4)

The Lipschitz polytope has two  important properties that should
be apparent by inspection:

(i) u ∈ Lj ∩ Be ⇒ gj(u) ≤ 0,
(ii) gj(u∗) ≤ 0 ⇒ Lj /= Ø.

The “double membership” of u ∈ Lj and u ∈ Be in (i) is required
to ensure both that u satisfies the upper bound of (3) and that the
bound itself is valid to begin with, respectively. Property (ii) should
be evident if one just considers u := u* when gj(u*) ≤ 0.

Furthermore, it is clear that the content (hypervolume) of Lj

increases monotonically as gj(u*) decreases – i.e., Lj admits more
and more implementable points because of the terms |ui − u∗

i
| being

allowed to grow larger while satisfying the inequality.
It is this observation that inspires the foundations of the present

work, illustrated geometrically in Fig. 1. If gj(u*) can be forced to
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