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a b s t r a c t 

A total variation diminishing Lax–Wendroff scheme has been applied to numerically solve the Boussinesq- 

type equations. The runup processes on a vertical wall and on a uniform slope by various waves, including 

solitary waves, leading-depression N-waves and leading-elevation N-waves, have been investigated using 

the developed numerical model. The results agree well with the runup laws derived analytically by other 

researchers for non-breaking waves. The predictions with respect to breaking solitary waves generally follow 

the empirical runup relationship established from laboratory experiments, although some degree of over- 

prediction on the runup heights has been manifested. Such an over-prediction can be attributed to the 

exaggeration of the short waves in the front of the breaking waves. The study revealed that the leading- 

depression N-wave produced a higher runup than the solitary wave of the same amplitude, whereas the 

leading-elevation N-wave produced a slightly lower runup than the solitary wave of the same amplitude. For 

the runup on a vertical wall, this trend becomes prominent when the wave height-to-depth ratio exceeds 

0.01. For the runup on a slope, this trend is prominent before the strong wave breaking occurs. 
c © 2013 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the population and economic activities continuously being 

concentrated towards the coastal area, it is increasingly important to 

protect the coastal infrastructure from wave impact and inundation 

in extreme events, which are anticipated to occur more frequently. 

Even when the wave crest in the open sea is lower than the ground 

level onshore, risk still exists because of the wave runup, which may 

significantly amplifies the free surface elevation. 

Wave runup is a classical hydrodynamic problem. In the canonical 

configuration, a periodic or single wave propagates over a constant- 

depth region and then climbs up a plane beach of a constant slope, as 

shown in Fig. 1 . The uniform slope of angle β represents an idealised 

beach connecting the flat offshore region and land. In the figure, h is 

the undisturbed depth, h 0 is the undisturbed depth in the flat region, 

η is the water surface position above the still water level, A 0 is the 

amplitude of the incident wave. The runup, R m 

, is defined as the 

maximum vertical elevation above the still water level reached by 

water on the slope. During shoaling from the deep to shallow waters, 

the asymmetry of the wave profiles increases and the wave height 

grows. Wave breaking may occur, if the incident waves are high and 

the slope is gentle. 
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Fig. 1. Definition sketch of the solitary wave propagation and runup on a slope. 

Fig. 2. Profiles of the right-travelling solitary wave and N-waves: (a) solitary, (b) LDN 

with μ = 0.5, (c) LDN with μ = 1.0, (d) LEN with μ = 0.5, and (e) LEN with μ = 1.0. 

The theory of the nonlinear long waves has advanced signifi- 

cantly with the development of “soliton theory”, which began with 

the Korteweg-de Vries (KdV) equation. A lot of analytical, numerical 

and experimental studies on solitary waves have been connected to 

tsunamis ( e.g ., [ 1 –3 ]). However, Tadepalli and Synolakis [ 4 ] argued 

that the main tsunami wave was often preceded by a depression, 

and thus introduced the concept of N-waves in order to achieve bet- 

ter geophysical relevancy. With the accumulated evidence from field 

observations, it is generally acknowledged that the first couple of 
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Fig. 3. Verification of solitary runup on a vertical wall. 

waves in the front of tsunamis approach beaches like either leading- 

depression N-waves (LDN) or leading-elevation N-waves (LEN), de- 

pending on the rupture properties in the subduction zone. Madsen 

and Sch ̈affer [ 5 ] questioned the validity of the classical solitary wave 

paradigm in tsunami studies, from the perspective that solitary waves 

have drastically different time and length scales in comparison with 

geophysical tsunamis. They cast doubt on whether the classical KdV 

or solitary wave theory is applicable to representing the main features 

of real tsunami events. 

For non-breaking solitary waves and N-waves, analytical solutions 

have been acquired concerning their runup processes. Synolakis [ 1 ] 

derived the first runup formula for incoming solitary waves. Tadepalli 

and Synolakis [ 4 ] gave one formulation of N-waves together with their 

runup solutions. Madsen and Sch ̈affer [ 5 ] proposed another form of 

N-waves, whose wavelength is not linked to the wave nonlinearity 

as in the solitary wave theory, and they also obtained the analytical 

runup formulae for incoming single waves and LDN. By applying the 

relationship dictated by the solitary wave theory, they recovered the 

solution of Synolakis [ 1 ]. No analytical solutions exist for breaking 

waves. More recently, numerical long-wave models have been widely 

employed in studying the runup process. Both the shallow water 

equations ( e.g. , [ 2 , 3 , 6 ]) and Bounssinesq equations ( e.g. , [ 7 –9 ]) have 

been widely used. 

It is not the purpose of this paper to justify which type of waves is 

more suitable for representing tsunamis. We applied a newly de- 

veloped shock-capturing Bounssinesq-type model to simulate the 

runups of various waveforms on a vertical wall and on a uniform 

slope, without making association with tsunami phenomena. The 

solitary waves, LDN and LEN of different heights were simulated. 

We examined the way that the waves changed their shapes during 

runup, and focused on the maximum runup height, which is an im- 

portant parameter for assessing the wave impact on beaches, whether 

it is the tsunami wave, storm surge, rogue wave or any other type of 

large coastal swells. The runup heights produced by different types of 

waves were compared. 

2. Mathematical model 

2.1. Governing equations 

If the wavelength is over twenty times larger than the water depth, 

then the wave can be classified to be shallow, for which the frequency 

dispersion can be totally ignored and the pressure distribution can 

be assumed to be hydrostatic. Boussinesq-type equations extend the 

shallow-water theory by incorporating the non-hydrostatic pressure 

distribution, which arises from the vertical acceleration of water par- 

ticles and can be linked to the curvature of the water surface pro- 

file. Although the standard Boussinesq equations include terms that 

model dispersion [ 10 ], the range of their applicability is not signifi- 

cantly greater than the shallow water equations. From a linear dis- 

persion point of view, the depth-to-wavelength ratio has to be less 

than 0.15. Over the years, various modified Boussinesq-type equa- 

tions have been proposed in the literature, such as Witting [ 11 ], Mad- 

sen and Sørensen [ 12 ], and Nwogu [ 13 ]. These models have extended 

the standard Boussinesq equations to be applicable to intermediate- 

depth water with the depth-to-wavelength ratio being up to 0.5. In 

order to achieve this, Madsen and Sørensen [ 12 ] introduced addi- 

tional third-order terms into the standard Boussinesq equations to 

obtain a system of equations with a dispersion relation closely match- 

ing the linear wave theory. Nwogu [ 13 ] took another approach by 

deriving equations at an arbitrary depth and making connections be- 

tween the depth of the formulation and the dispersion characteristics. 

Through numerical experiments, Shiach [ 14 ] found that the Madsen 

and Sørensen’s Boussinesq-type equations provided marginally bet- 

ter results than the Nwogu’s formulation in terms of wave runup. 

The present study adopted the one-dimensional Boussinesq-type 
equations of Madsen and Sørensen [ 12 ], which take into account the 
effects of uneven bed elevations. The continuity equation and mo- 

mentum equation are: 
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where x is the horizontal coordinate, t is the time, the subscripts t 

and x denote the partial derivatives with respect to time and space, 

respectively, the two unknown variables η( x , t ) and q ( x , t ) are the free- 

surface displacement above the still water level and the volumetric 

discharge per unit width, respectively, h ( x ) is the undisturbed water 

depth, d ( x , t ) = η( x , t ) + h ( x ) is the total water depth, and g is the 

acceleration due to gravity. The last three terms on the right hand 

side of Eq. (2) are the Boussinesq dispersive terms, which account for 

the non-hydrostatic effect on pressure. B is the Boussinesq dispersion 

enhancement coefficient, which can be tuned to match the frequency 

dispersion of real water waves. B = 0 implies no improvement, and the 

system reverts back to the classical Boussinesq equations originally 
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