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a b s t r a c t

About 90% of all natural earthquakes have epicenters in offshore areas and may cause damage to subsea
and floating structures. These excitations can have effects on the performance of facilities installed on
the seabed, like foundations, pipelines and subsea equipment for the oil industry. Several studies on
this subject have been carried out to show the importance of seaquake analyses and their effects have
been highlighted. In this paper the boundary element method is used to analyze the influence that some
parameters, involved in this kind of problems, have on the dynamic response of marine waters under
the incidence of theoretical seismic events. This method takes advantage of the elastodynamic Green’s
functions and, after the application of boundary conditions, a Fredholm system of integral equations is
achieved and solved in frequency domain. Results in time domain are also obtained by applying a DFT
algorithm. Flat and non-flat seabed configurations excited for normal and oblique incidence of P and S
waves are considered. Pressure profiles through water depth are provided and synthetic seismograms of
pressure are also shown. Amplifications of water pressures are emphasized.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

About 90% of all natural earthquakes have epicenters in offshore areas [1].
Seaquakes are characterized by the propagation of vertical earthquake motions on
the sea floor as a compression wave and are reported to cause damage to ships and
their effect on floating structures is a matter of great concern [2]. When the seabed
is vibrating due to seaquake, the compression waves propagate into seawater on
account of compressibility of water. An analytical approach that can predict the
dynamic response of a flexible circular floating island subjected to seaquakes was
studied by Tanaka et al. [3], where the floating island was modeled as an elastic
circular plate, and the anchor system is considered to be composed of tension-
legs. A linear potential flow theory applied to flexible floating island subjected to
wind-waves and seaquakes was presented in [4], here the hydrodynamic pressure
generated on the bottom surface of the island was obtained in closed form. The non-
linear transient response of floating platforms to seaquake-induced excitation was
studied by Arockiasamy et al. [5], where cavitation effects were considered.

Ye [6] showed that under strong seismic loading, the surface region of seabed
foundation could liquefy and also demonstrated that the Young’s modulus of seabed
foundation has significant effect on the seismic response. Liquefaction produced
by waves at near shore areas was investigated using a marine geotechnical point
of view [7]. Repeated loads from seaquakes cause softening of the clayey seabed
foundation of offshore structures [8]. Special studies on design considerations for
marine structures situated on sand deposits have shown the potential for instability
caused by the development of excess pore pressure as a result of wave loading
[9]. Liquefaction of seabed under seismic loading governs the overall stability of
submarine pipeline [10,11].
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A special boundary method for earthquake-induced hydrodynamic pressures
on rigid axisymmetric offshore structures, including both the water compressibility
and seabed flexibility, was presented by Avilés and Li [12]. A boundary integral
equation was derived assuming that the seabed is a semiinfinite homogeneous
elastic solid in order to analyze the seaquake-induced hydrodynamic pressure
acting on the floating structure [2]. Boundary integral equations have been also
used to calculate the hydrodynamic pressure caused by seaquake in layered media
[13], and for three dimensional cases in [14]. Recently, the boundary element
method and the discrete wave number method have been used to determine
pressures near the interface of fluid–solid models [15,16].

Autonomous data-acquisition system using ocean bottom seismometer with
hydrophones was used to record seismic and pressure signals generated by earth-
quakes and tsunamis [1]. Moreover, test deployments of seismic instruments have
been successfully carried out in shallow water and full ocean depth by Minshull et al.
[17].

This paper uses the boundary element method (BEM) to calculate the seismic
profile through water depth due to the incidence of P and S waves on the seabed.
Wave amplifications due to the configuration of the sea bottom are highlighted. Our
formulation can be considered as a numerical implementation of Huygens’ principle
in which the diffracted waves are constructed at the boundary from which they are
radiated. Thus, mathematically it is fully equivalent to the classical Somigliana’s
representation theorem. Our results are compared with those previously published.
In the following paragraphs a brief explanation of the BEM applied to sea bottom
subjected to seismic motions is given.

2. Formulation of the method

Consider the movement of an elastic solid, homogeneous and
isotropic ˝ in volume delimited by the boundary � , subjected to
body forces bi(�, t) and zero initial conditions. Introducing fictitious
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sources of density�i(�, t) on� , the total fields of displacements and
tractions can be written as Banerjee and Butterfield [18]:

uj(x, t) =
∫
�

Gij(x, �) ∗ �i(�, t)d�� +
∫
˝

Gij(x, �) ∗ bi(�, t)d˝� + uo
j
(x, t)

tj(x, t) =
∫
�

Tij(x, �) ∗ �i(�, t)d�� +
∫
˝

Tij(x, �) ∗ bi(�, t)d˝� + to
j
(x, t)

(1)

where uo
j
(x, t) and to

j
(x, t) are free terms depending on the type of

elastic waves impinging on the body, for this study is the occurrence
of P and S waves. The symbol (*) means the convolution integral in
the time domain, x = {x1, x3}. Gij(x, �) and Tij(x, �) are the Green’s
functions for displacements and tractions, respectively, which can
be found in Section 3.

For Eq. (1) it is accepted that these boundary integrals are valid
in the sense of the Cauchy principal value. Then, if allowed to the
point x to move closer to the boundary � from inside, then Eq. (1)
become the following boundary equations:

uj(x, t) =
∫
�

Gij(x, �) ∗ �i(�, t)d�� +
∫
˝

Gij(x, �) ∗ bi(�, t)d˝� + uo
j
(x, t)

tj(x, t) = 1
2
�j(x, t)ıij

∫
�

Tij(x, �) ∗ �i(�, t)d�� +
∫
˝

Tij(x, �) ∗ bi(�, t)d˝� + to
j
(x, t)

(2)

Fig. 1. Offshore structure under the incidence of seismic motions.

where ıij is Kronecker delta.
Transforming the problem to the frequency domain and

accepting that the incidence wave has harmonic depend-
ence with time, of the type eiωt (i.e. uj(x, t) = uj(x,ω)eiωt)),
where ω is the circular frequency and “i” is the imaginary
unit. Then, the displacements and tractions can be expressed
as:

uj(x,ω) =
∫
�

Gij(x, �,ω)�i(�,ω)d�� +
∫
˝

Gij(x, �,ω)bi(�,ω)d˝� + uoj (x,ω)

tj(x,ω) = 1
2
�j(x,ω)ıij

∫
�

Tij(x, �,ω)�i(�,ω)d�� +
∫
˝

Tij(x, �,ω)bi(�,ω)d˝� + toj (x, t)
(3)

If the body is made by a fluid, the following functions represent
the displacement field and pressures:

ufn(x,ω) = 1
2
 (x,ω) + 1

�ω2

∫
�

∂Gf (x, �,ω)
∂n

 (�,ω)d�� + 1
�ω2

∫
˝

∂Gf (x, �,ω)
∂n

bf (�,ω)d˝�

pf (x,ω) =
∫
�

Gf (x, �,ω) (�,ω)d�� +
∫
˝

Gf (x, �,ω)bf (�,ω)d˝�

(4)

where  (x,ω) is the force density in the fluid, � is the fluid den-
sity, Gf (x, �,ω) is the Green function for the fluid and is given by

Gf (x, �,ω) = �ω2

4i H
(2)
0 (ωr/cf ), H(2)

0 is the Hankel function of the sec-
ond kind and zero order, r is the distance between x and �, cf is
the fluid velocity. The superscript f denotes fluid. Fig. 1 shows a
schematic representation of an offshore structure under the inci-
dence of seismic motions. Ha represents the water depth and � is
the incident angle of seismic waves.

The boundary conditions of the problem studied are:
(a) At the free surface of the water the pressure is zero, i.e.:

pf = 0 (5)

(b) In the seabed:
(b.1) Continuity of normal displacement

ui(x,ω)ni = ufn(x,ω) (6)

(b.2) Shear stress is zero in solid–water interface:

(ıij − ninj)tj(x,ω) = 0 (7)

(b.3) Stresses in the solid are balanced with water pressure:

ti(x,ω)ni = −pf (x,ω) (8)

where ni is the unit normal vector associated with direction i,
ufn(x,ω) is the displacement normal to the interface surface and
pf (x,ω) is the water pressure.

According to the boundary conditions, Eqs. (5)–(8) and taking
into account equation (3) and (4), we can write:∫
�

Gf (x, �,ω) (�,ω)d�� = 0 (9)

[∫
�

Gij(x, �,ω)�j(�,ω)d�� +
∫
�

Gij(x, �,ω)bj(�,ω)d˝� + u0
i
(x,ω)

]
ni

= 1
2
 (x,ω)ıij +

1
�ω2

[∫
�

∂Gf (x, �,ω)
∂n

 (�,ω)d��

]

+
∫
˝

∂Gf (x, �,ω)
∂n

bf (�,ω)d˝� (10)

(ıij − ninj)
[

1
2
�i(�,ω)ıij +

∫
�

Tij(x, �,ω)�j(�,ω)d��

+
∫
˝

Tij(x, �,ω)bj(�,ω)d˝� + t0i (x,ω)

]
= 0 (11)
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