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a b s t r a c t

The problem of water wave scattering by a thin horizontal elastic plate (semi-infinite as well as finite)
floating on an ocean of uniform finite depth in which the ocean bed is composed of porous material of
a specific type is analyzed. The method of eigenfunction expansion is used in the mathematical analysis
and the quantities of physical interest, namely the reflection and transmission coefficients, are obtained.
Numerical estimates for these coefficients are obtained for different values of the parameter describing
the porosity of the ocean bed and for different edge conditions of the elastic plate. The edge conditions
considered here involve (i) a free edge, (ii) a simply supported edge and (iii) a built-in edge. From the
numerical results it is observed that for free edge condition, the porosity of the ocean bed has little effect
on the reflection and transmission coefficient for both the cases of semi-infinite and finite elastic plate.
The energy identity related to reflection and transmission coefficients in a porous bed is derived and is
used as a partial check on the correctness of the numerical results for the semi-infinite elastic plate.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In coastal areas, porous structures are widely used as break-
waters to protect harbours, inlets and beaches from wave action.
The submerged structure is usually adopted with a porous material
that has the function of ecological restoration in the coastal area.
Physically, the porous structure is able to absorb and dissipate the
wave energy when the incident wave transmits over it. Silva et al.
[1], Zhu [2] considered water-wave reflection and/or transmission
problems where a porous medium was assumed to lie on a sea-
bed of varying quiescent depth. Tsai et al. [3] investigated the wave
transmission over a submerged permeable breakwater on a porous
sloping seabed. Yu and Chwang [4] investigated the wave motion
through a two-layer porous structure. They presented numerical
results for the special cases where the two layers are of the same
material properties or where porous medium exists only in the
lower layer. Many theoretical as well as numerical investigations
were also carried out for the permeable or impermeable submerged
breakwaters in the water wave literature, e.g. Losada et al. [5], Liu
et al. [6], Hur and Mizutani [7] and others.

In the present paper we have considered the interaction of a
plane incident surface wave with a semi-infinite elastic plate [8,9]
and with a finite elastic plate [10,11] floating or submerged in ocean
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regarded as an inviscid fluid of uniform finite depth with a porous
bed. Meylan and Squire [10] considered the interaction of water
wave with a finite elastic plate in both infinite and finite depth
water while Hassan et al. [11] considered only finite depth water.
Here we consider a special type of porous bottom [12] in which
the motion of the fluid inside the porous bed is not analyzed and
it is assumed that the fluid motions are such that the resulting
boundary condition on the sea-bed used in this paper holds good
and depends on a known parameter G which has a dimension of
(length)−1, called the porosity parameter. We consider the value of
this porosity parameter G to be only real. Due to the percolation at
the fluid-porous interface, the porosity parameter G can be chosen
to be real in which only flow resistance is considered by neglect-
ing the inertial terms. It may be mentioned here that for existence
of progressive waves on the surface of the open water region and
also on the thin elastic plate floating on water, it is necessary that
each of the corresponding dispersion equations ((A.1) and (A.4) in
Appendix A) must possess a unique real positive root. This is pos-
sible only if G is real. However, if G is chosen to be complex, then it
can be shown that each of the dispersion equations does not have
any real positive root so that there does not exist any progressives
waves on the upper surface. There will be damping of wave energy
and no wave can propagate on the upper surface of water in this
situation.

Various approaches for the study of wave interaction with an
elastic plate were summarised by Teng et al. [8] and Fox and Squire
[9]. Fox and Squire [9] used the eigenfunction expansion method
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Fig. 1. Sketch of definition for semi-infinite elastic plate.

to study wave interaction with a floating semi-infinite thin elastic
plate and they observed that the eigenfunctions are not orthogonal
with respect to the conventional inner product. Sahoo et al. [13], Xu
and Lu [14] defined a new inner product in which the original eigen-
functions became orthogonal. Bhattacharjee and Sahoo [15], Xu and
Lu [16] further applied this method for the case of a two-layer fluid.

Three different types of edge conditions, namely (i) a free edge,
(ii) a simply-supported edge and (iii) a built-in edge, are consid-
ered. It may be noted that for a free edge, the shear force and the
bending moment of the plate vanish at the edge. However, artificial
structures are usually kept fixed or moored at the edge by ropes,
anchors, tension cables or piles. In such cases the free edge condi-
tion is to be replaced by the simply supported edge condition or
the built-in edge condition as per reality. It may be noted that for
the simply supported edge condition, the deflection and the bend-
ing moment are assumed to vanish, whereas for the built-in edge
condition, the deflection and the slope of deflection will vanish. We
use here the usual inner product and the importance of the present
method is that the vertical eigenfunctions due to this porous bed
profile are orthogonal in the open water region which is the same
as in Xu and Lu [14]. The energy balance equation [17,18] for the
semi-infinite elastic plate in porous bed related to reflection and
transmission coefficients are derived by using Green’s identity in
Appendix B. While computing these coefficients numerically for a
particular wave number and for various other parameters corre-
sponding to the semi-infinite elastic plate, it has been checked that
these satisfy the appropriate energy identity.

2. Wave interaction with a semi-infinite elastic plate

2.1. Mathematical formulation

The problem under consideration is two-dimensional in nature.
The Cartesian coordinates Ox, Oy are chosen in such a way that
y-axis is measured positive vertically downwards and the plane
y = 0 coincides with the undisturbed upper surface. A floating semi-
infinite elastic plate of very small thickness d occupies the position
y = 0, 0< x < ∞ while the ocean at rest has the domain −∞ < x < ∞,
0 ≤ y ≤ h (cf. Fig. 1). The ocean bottom is composed of some spe-
cific kind of porous materials of the porosity parameter G which
has a dimension of inverse of length and is taken to be real. It
is assumed that the ocean water is inviscid and incompressible.
Under the assumptions that the motion is irrotational and simple
harmonic in time with circular frequency ω, the velocity potential

describing the motion in the fluid is represented by Re{�(x, y)eiωt},
where � satisfies

∂2
�

∂x2
+ ∂

2
�

∂y2
= 0 in 0 ≤ y ≤ h,−∞< x <∞. (1)

The bottom condition is

�y − G� = 0 on y = h, −∞< x <∞, (2)

where G is the porosity parameter of the ocean bottom (cf. Martha
et al. [12]).

We assume that any particle which is once between the elastic
plate and the water surface remains there. Under this assumption,
the linearised kinematic condition is given by

�y = −iω� on y = 0, 0< x <∞, (3)

Re(�e−iωt) denoting the depression of the thin elastic plate below
its rest position for x > 0 and of the free surface for x < 0.

The conditions on the upper surface y = 0 are given by

ω2� + g ∂�
∂y

= 0 on y = 0, −∞< x < 0, (4a)

�ω2� + (EI
∂4

∂x4
−meω2 + �g)

∂�
∂y

= 0 on y = 0, 0< x <∞,
(4b)

where EI = (Ed3/12(1 −�2)) is the flexural rigidity of the plate, E
being the effective Young’s modulus of the elastic plate, � being the
Poisson’s ratio, me =�ed, �e is the density of the elastic plate, � is
the fluid density and g is the gravitational acceleration.

The progressive gravity waves propagating at each of the free
surface and elastic plate regions can be expressed by the potential
function

�(x, y) = e±ikx k cosh k(h− y) − G sinh k(h− y)
k cosh kh− G sinh kh

(5)

where k is real and positive, and for waves in the open water and
the region covered by the elastic plate k satisfies respectively the
equations

ω2(k − G tanh kh) − kg(k tanh kh− G) = 0, (6a)

and

�ω2(G tanh kh− k) + (EIk4 −meω2 + �g)(k2 tanh kh− kG) = 0.

(6b)

Eqs. 6a and (6b) are the dispersion equations for the open water
region and elastic plate covered region respectively. Determination
of the roots of these two equations are given in Appendix A.

Further it is assumed that at the edge (0+, 0) where the plate
meets the free surface, one of the following edge conditions are
satisfied at (0+, 0) [19].

(i)Free edge: There is zero bending moment and zero shear force
at the free edge of the plate so that ∂2�/∂x2 = 0 and ∂3�/∂x3 = 0 at
(0+, 0). Using condition (3) and eliminating � we derive that for a
free edge plate, the edge conditions are

∂3
�

∂x2∂y
(+0,0) = 0,

∂4
�

∂x3∂y
(+0,0) = 0. (7)

(ii)Simply-supported edge: At a simply-supported edge the
displacement is zero and there is no ending moment so that � and
∂2�/∂x2 vanish at (0+, 0). Using condition (3) and eliminating �we
derive that for a simply supported edge plate, the edge conditions
are

∂�
∂y

(+0,0) = 0,
∂3
�

∂x2∂y
(+0,0) = 0. (8)
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