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a b s t r a c t

Uncertainty analyses are necessary to identify, evaluate, and report the main sources of errors in modeling
studies and their impacts on the model predictions. Although uncertainty analysis has been a subject
of increased interest by the water resources community during the last couple of decades, in estuarine
hydrodynamic modeling this is an emerging topic that requires more research. Some of the most relevant
problems remaining in the practice include the identification of the principal sources of errors affecting
the model predictions, and the identification of effective and computationally feasible methodologies for
their quantification. This investigation evaluates the impacts of input data errors on the predictions of
a 3D hydrodynamic model of the Weeks Bay estuary, Alabama. The uncertainty analysis is performed
using the First Order Variance Analysis (FOVA) and the results compared to a standard Monte Carlo
Uncertainty Analysis (MCUA). A procedure to implement a skill assessment as a fundamental component
of the FOVA method is presented. The uncertainty analyses are performed temporally as well as spatially
distributed over the model domain. The results indicate that the uncertainty in a prognostic variable is not
homogeneously distributed over the computational domain, and that there are areas prone to a higher
or lower uncertainty. The identification of these areas is relevant for the design of data collection plans
intended to improve the confidence in the model results. The comparison of the methods indicates that
both are effective to provide uncertainty estimates, although FOVA tends to overestimate the predictions
obtained by MCUA. In general this overestimation can be considered as a conservative estimation of the
uncertainty given the existence of other sources of errors more complex to evaluate.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty analysis is defined as the procedures and strategies implemented to
identify, evaluate and report the main sources of errors in a modeling application and
their impacts on the model predictions. Model uncertainty arises as a consequence
of errors in the model structure (e.g. oversimplification of processes or errors in
the set of equations that define a model), errors in the input data due to random
or systematic errors during the collection of data, and parametric errors caused by
the difficulty of identifying physically representative parameter values valid at the
temporal and spatial scales of the model [27,41].

During the last years uncertainty analysis has received special attention (partic-
ularly in hydrological, ecological and climate modeling) and several strategies have
been developed and implemented to investigate the impacts of different types of
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error on the predictions of numerical models [14,32,35,39]. The existing strategies
are generally classified into analytical and approximate methods [40], although only
these later have applicability for most models used in the practice. The approximate
methods include moment based methods such as the First Order Variance Analysis
(FOVA) and the Advanced First Order Variance Analysis (AFOVA) [3,28,44], Proba-
bilistic Point Estimate Methods (PPEMs) such as the Rosenblueth and Harr methods
[19,40], and Monte Carlo based methods such as Bayesian analysis (BA), Markov
Chain Monte Carlo (MC2) and the Generalized Likelihood Uncertainty Estimation
method, GLUE (e.g. [2,11,37]).

Despite the importance of uncertainty in the modeling practice and the availabil-
ity of methods for its quantification, uncertainty analysis is an uncommon practice in
hydrodynamic investigations. This is partially explained because even in small scale
hydrodynamic models, the computational burden (some estuarine models require
several hours or a day to perform a simulation) can make unpractical the imple-
mentation of some of the most widely used strategies for uncertainty analysis (e.g.
Monte Carlo simulations, Bayesian Monte Carlo analysis, GLUE). As a result, in estu-
arine modeling uncertainty analysis remains as an emerging topic where some of the
most important problems include (a) the identification of the most relevant sources
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of uncertainty, and (b) the evaluation of suitable strategies for the quantification
of their impacts on the model predictions. Recent investigations have attempted to
fill these gaps by showing the important effects of model structure, input data, and
parametric uncertainty in several estuarine models and by introducing FOVA as an
effective and parsimonious strategy to perform uncertainty analyses [3,7,23,24,36].
The simplicity of implementation makes FOVA particularly attractive for complex
hydrodynamic models, but more research is necessary to determine if the uncer-
tainty estimates from FOVA are consistent with those derived from other reference
methods such as Monte Carlo simulations.

The objective of this investigation is to address this later issue by evaluating the
impacts of input data uncertainty on the predictions of the hydrodynamic model of
the Weeks Bay estuary, Alabama (USA). We implement FOVA as an alternative strat-
egy to traditional Monte Carlo Uncertainty Analyses (MCUA), and investigate the
benefits and limitations of both methods for practical purposes. We also investigate
in detail, based on temporal and spatial analyses, how the errors in the specification
of the water surface elevations at the open boundary, the model bathymetry, and
the freshwater flows, impact the capacity of the model to reproduce observations of
water surface elevations (WSE), current velocities, and salinities within the estuary.
Finally, we illustrate how a skill assessment can be used as a procedural component
of the FOVA method.

The paper is organized as follows: Section 2 describes the FOVA and MCUA
methods, the study area, the hydrodynamic model development and the criteria
for the model evaluation. Section 3 discusses the sources and magnitude of the
errors in our input datasets. Section 4 presents a sensitivity analysis based on FOVA
estimates. Section 5 presents the results of the uncertainty analyses including the
comparison between methods. Section 6 presents a discussion of the results, and
finally, Section 7 presents the conclusions of the investigation.

2. Methods

2.1. Uncertainty analysis

2.1.1. First Order Variance Analysis (FOVA)
The First Order Variance Analysis (FOVA) provides estimates

of model uncertainty by linearly propagating the errors from
input data or model parameters to the model predictions. The
method is relevant because it also provides sensitivity estimates
and its implementation is computationally straightforward. Only
few hydrodynamic modeling studies have implemented FOVA for
the evaluation of input data or parametric uncertainty (e.g. [3,36]),
and although further research is necessary to evaluate the limita-
tions and benefits of the method compared to alternative strategies,
the existing studies show that the method is effective in: (a) identi-
fying the most relevant input variables or parameters contributing
to the output uncertainty, (b) evaluating the degree of sensitiv-
ity of the model’s output to any variable under analysis, and (c)
quantifying uncertainty on model predictions.

The fundamental idea behind FOVA is to construct a Taylor series
expansion truncated at the first order term of the function F(X) that
predicts the evolution of a given output variable Y = F(X) [3,29,44].
In the context of this investigation F can be interpreted as the
hydrodynamic model, X a vector containing the input variables
x1, x2, . . ., xn (e.g. wind speed, model bathymetry, and freshwa-
ter flows) and Y the vector describing a set of predicted variables
y1, y2, . . ., yn (e.g. WSE and flow velocities). The expansion of the
function F(X) is performed around the model predictions f = F(X0)
resulting from a set of unperturbed or mean values of the input
variables X0 = (x1o, x2o, . . ., xno). The resulting expansion is given
by,

F(X) = f (x1o, x2o, . . ., xpo) +
p∑

i=1

∂F

∂xi

∣∣∣∣∣
xi=xio

(xi − xio) (1)

where p is the number of input variables or parameters under
study; xio is the value of the ith input variable at the expansion
or unperturbed point o; and ∂F/∂xi is the local change of the model
predictions Y due to changes in the input variable xi. The expected
value and variance of the model predictions Y are estimated based
on Eq. (1) as [3],

E[Y] = E[F(X)] = f (x1e, x2e, . . ., xpe) (2)
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If the input variables (x1o, x2o, . . ., xno) are statistically indepen-
dent, then Eq. (3) is simplified to:

Var(Y) = �2
Y =

p∑
i=1

[
∂F

∂xi
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xi=xio

�i

]2

(4)

where �2
Y is the variance associated with the model predictions (i.e.

output uncertainty), and �2
i

is the variance of the ith input variable
(i.e. input uncertainty). The term ∂F/∂xi|xi=xio

quantifies the change
in the output variable of interest as a result of a perturbation of the
input variable xi from the unperturbed point xo. The derivative term
∂F can be evaluated numerically using a simple difference scheme.
For example, using forward differencing ∂F = F(xio + �xi) − F(xio),
where F(xio + �xi) is the model prediction obtained after perturb-
ing the input variable xi in a magnitude equivalent to �xi from the
unperturbed or mean value xio. Note that Eq. (4) can be expressed
alternatively in terms of coefficients of variation if the standard
deviations in this equation are normalized with the mean or unper-
turbed values of their corresponding variables (i.e. CVY ≡ �Y /Yo,
CVxi

≡ �i/xio). In this case Eq. (4) would be expressed as

CV2
Y =

p∑
i=1

[(DSCFxi=xo
i ) ∗ CVxi

]2 (5)

where DSCi is given by [3]

DSCFxi=xo
i ≡

[
∂F/∂xi

F(xi)/xi

]
xi=xo

(6)

and is defined as the dimensionless sensitivity coefficient, which
quantifies the relative importance of changes in the input variable
xi on the model predictions.

The complete procedure for implementing FOVA can be sum-
marized in five steps: (1) define the input and output variables of
interest, (2) define the mean or unperturbed values of the input
and output variables, (3) define the magnitude of the perturba-
tion for each input variable and compute the DSC by using Eq. (6).
(4) Estimate the coefficient of variation CVxi

(or alternatively the
standard deviation �i) for each input variable (i.e. estimate the
degree of uncertainty in each input variable), (5) propagate the
uncertainty in the input variables to the output variables using
Eqs. (4) or (5) (i.e. compute the CV (Eq. (5)) or standard deviation
�i (Eq. (4)) of the output variable of interest). Step four can also
be implemented in parallel or interchangeably with step two or
three.

In this study, the input variables of interest were the water sur-
face elevations in the open boundary (�ob), the model bathymetry
(Mbtm), and the freshwater inflows (Qf), and the output variables
of interest were the model predictions of water surface elevation
(WSE), current speeds (Us), and water salinity (Wsal) (Step one). For
step two we identified the input uncertainty based on the instru-
ments and procedures used to collect the input data. For step three
we used a skill assessment in order to set up the mean values of
the output variables in the “calibrated” values (highest agreement
achieved between model predictions and observations). Note also
that the skill assessment is useful to evaluate the quality of the input
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