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a b s t r a c t 

A buried pipeline may have upheaval buckling when it works in high temperature and high pressure (HT / HP) 

conditions. The upheaval buckling behavior is sensitive to initial structural imperfections. There have already 

been some approximation formulas of critical axial forces for some particular shape imperfections. However, 

these formulas did not take into account of the imperfection out-of-straightness (OOS) as a whole. Based 

on dimensional analysis and finite element (FE) analysis some brand new formulas are presented for the 

critical axial forces. These formulas are different from the traditional formulas in form and they include the 

out-of-straightness directly and integrally. Finally a case study is presented which illustrates the application 

of these formulas. 
c © 2014 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is well known that the high operating temperature and pressure 

usually cause a buried pipeline to have upheaval buckling. That is be- 

cause large axial compressive forces are produced by the constrained 

expansion setting up by the thermal and internal pressure loads in 

the pipeline. With a small structural imperfection the pipeline will 

uplift from its initial position suddenly if the large axial compressive 

forces are bigger than the critical buckling forces, that is called a snap. 

The snap is a dramatic dynamic behavior which may cause damage 

to an in-service pipeline, so it is important to study this behavior. 

In the past 30 years, a lot of analytical results have been presented 

on the pipeline upheaval buckling problem. Hobbs [ 1 ] analyzed both 

lateral and upheaval buckling problems of ideal straight pipelines 

based on the related work about railroad tracks. He found that for 

normal friction coefficients the lateral mode occurred at a lower axial 

load than the upheaval mode and was dominant in pipelines unless 

the pipelines were buried. He also proposed some useful theoretical 

solutions for the critical axial forces. Yun and Kyriakides [ 2 ] stud- 

ied the upheaval buckling of buried pipelines through a large de- 

flection extensional beam nonlinear formulation. The pipelines were 

assumed to possess some different localized imperfections, and their 

influence on the critical axial forces was analyzed. They showed that 

the critical loads were imperfection sensitive. However, they did not 

give out any analytical solution or approximation formula. Taylor et 

al. [ 3 –6 ] did a series studies on the upheaval buckling problem of 
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pipelines with structural imperfections. They pointed out that the 

out-of-straightness of the imperfection w 0 / L 0 is an essential imper- 

fection parameter. However their critical axial force formulas did not 

include the parameter integrally. Palmer et al. [ 7 ] presented a semi- 

empirical simplified design method based on numerical analysis. They 

defined two dimensionless parameters for the critical axial force and 

the buckling wavelength, and they pointed out that the specific shape 

of an imperfection only affects the coefficients and not the general 

form of the parameters. However, the two parameters took into im- 

perfection height and length in separating form as well. Richards [ 8 ] 

studied the imperfection shape effects on the upheaval buckling be- 

havior. He pointed out that the imperfection shape has a big influence 

on the buckling behavior again. Maltby and Calladine [ 9 ] did an inves- 

tigation into the upheaval buckling of buried pipelines by experiments 

and theoretical analysis. They suggested some critical axial force for- 

mulas for the initial imperfect pipelines. However, these formulas still 

did not have out-of-straightness as a whole. Croll [ 10 , 11 ] presented a 

simplified model for the imperfect pipeline upheaval buckling analy- 

sis. He reinterpreted the classical Martinet analysis and extended the 

approach for the imperfect pipelines. He provided two simple and 

explicit analytical expressions for the upper and lower buckling load 

bounds in which the out-of-straightness was still separating in two 

equations. Wang et al. [ 12 , 13 ] investigated the vertical buckling of 

pipelines with soft seabed. The initial straight and imperfect pipelines 

were both studied, and the soil resistance effects on pipelines ’ stabil- 

ity, buckling mode and amplitude were presented. They showed a 

big influence of imperfections in their models again. Liu et al. [ 14 , 15 ] 

analyzed the pipeline upheaval buckling by the nonlinear finite el- 

ement method. They showed that for the same imperfection height 

the pipeline with one point support is most likely to have upheaval 

buckling. Most recently, Karampour et al. [ 16 ] studied the lateral and 
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Nomenclature 

w 0 height of pipeline imperfections 

L 0 wavelength of pipeline imperfections 

w 0 / L 0 out-of-straightness of pipeline imperfections 

EI flexural rigidity of pipeline section 

q distributing load on pipelines (including self-weight 

per unit length) 

P L critical axial force of pipeline upheaval buckling 

P L 1 critical axial force of pipeline upheaval buckling with 

imperfection No. 1 

P L 2 critical axial force of pipeline upheaval buckling with 

imperfection No. 2 

P L 3 critical axial force of pipeline upheaval buckling with 

imperfection No. 3 

F axial force of pipeline 

T temperature load on pipeline 

α thermal expansion coefficient of pipeline steel 

E elastic modulus of pipeline steel 

I second moment of area of pipeline section 

A area of pipeline section 

upheaval buckling of pipelines respectively. For the upheaval buck- 

ling, some analytical solutions were given out and the response under 

three types of localized initial imperfections was compared. The shape 

influence on the critical loads was verified again in their work. 

From the previous researches it is clear that the critical axial forces 

of pipeline upheaval buckling are sensitive to the imperfection shape 

and the out-of-straightness of the imperfection. The previous re- 

searchers such as Palmer, Maltby, Taylor, Croll et al. have shown some 

critical axial force formulas for some particular shape imperfections, 

in which the imperfection height was only taken into consideration 

[ 5 , 7 , 9 , 10 ]. However, the imperfection wavelength also has a big influ- 

ence on the critical loads, and it should be included into the formulas. 

In a word, the out-of-straightness should be included as a whole in the 

critical axial force formulas. In this paper, the imperfection influence 

on upheaval buckling of buried pipelines is researched. The upheaval 

buckling effects of three groups of pipeline segments with differ- 

ent shape imperfections are simulated by using the finite element 

software ABAQUS. Using the numerical results some design-oriented 

approximation formulas are figured out for the critical axial forces. 

Finally a case study which illustrates the usage of these formulas is 

presented. 

2. Dimensional analysis 

As mentioned above, both the imperfection shape and the out-of- 

straightness of the imperfection have big influences on the critical 

loads of pipeline upheaval buckling. However, the critical load for- 

mulas presented by previous researchers are usually corresponding 

to the sinusoidal profile imperfection and did not include the out-of- 

straightness directly and integrally. In this section a new form dimen- 

sionless parameter for the critical axial force is deduced according to 

the basic procedure of dimensional analysis [ 17 ]. 
Based on Euler buckling theory and the previous research results 

on the pipeline upheaval buckling problem [ 5 , 7 ], it is known that for a 

particular shape imperfection the critical axial force P L of a upheaval 

buckling pipeline is only related to EI , q and w 0 / L 0 . That is to say these 
parameters form a complete set of independent quantities, then we 

get, 

P L = f 

(
EI , q, 

w 0 

L  0 

)
(1) 

Adopting the system of units M , L , t (mass, length and time), the 

dimensions of the each quantity in Eq. (1) are listed: 

I nd epend ent : [ EI ] = ML 3 t −2 , [ q ] = Mt −2 , 

[
w 0 

L  0 

]
= 1 , 

Depe nde nt : [ P L ] = MLt −2 . 

The two quantities EI , q comprise a complete dimensional inde- 

pendent subset of the three independent variables. The dimensions 

of the remaining independent variables w 0 / L 0 and the dependent 

variable P L can be made up of them, viz.: 

I nd epend ent : 

[
w 0 

L  0 

]
= 1 , 

Depe nde nt : [ P L ] = MLt −2 = 

(
ML 3 t −2 

)1 / 3 

(
Mt −2 

)2 / 3 = 

[ 
( EI ) 

1 / 3 
( q ) 

2 / 3 
] 
. 

According to Buckingham’s Pi-theorem [ 17 ], finally a dimension- 

less equation which has only one independent variable can be de- 

rived: 

P L (
q 2 EI 

)1 / 3 
= g 

(
w 0 

L  0 

)
. (2) 

So the critical axial force formula has the following form: 

P L = g 

(
w 0 

L  0 

)(
q 2 EI 

)1 / 3 
. (3) 

Notice that Eq. (3) is very different from the traditional critical 

axial force formulas, such as, P L = 4.092 ( EIq / w ) 1 / 2 , P L = 2.828 ( EIq / 
w ) 1 / 2 , P L = 3.478 ( EIq / w ) 1 / 2 [ 5 , 10 , 11 ]. In Eq. (3) the powers of q , w and 

EI are 2 / 3, 0 and 1 / 3 respectively, rather than all 1 / 2. The coefficient g 

( w 0 / L 0 ) is a function which depends on the out-of-straightness inte- 

grally, rather than a constant or a function depending on imperfection 

height only. On the other hand, as indicated by Palmer et al. [ 7 , 8 ], the 

imperfection shape only affects the coefficients and not the general 

form of the critical axial force formulas. So this coefficient function 

is unique for a particular shape imperfection. That implies if the im- 

perfection shape is determined, this function can be determined, and 

if this function is determined, the critical axial force formula of a 

pipeline with a particular shape imperfection can be determined. To 

determine a coefficient function g ( w 0 / L 0 ), we need to know a set 

of values of P L / ( q 2 EI ) 
1 / 3 

which are corresponding to a set of values 

of w 0 / L 0 . In fact, the critical axial forces are usually unknown, and 

the others are known. So we can set some sets of out-of-straightness 

values and find out the corresponding critical axial force values. In 

the following section the FE buckling simulation of some imperfect 

pipeline segments has been carried out by ABAQUS. 

3. FE modeling 

According to the previous researchers, such as Palmer [ 7 ], the 

finite element analysis results are convenient to form approximations 

of the function g ( w 0 / L 0 ). Here we consider three different shape 

imperfections to determine the coefficient function g ( w 0 / L 0 ). 

3.1. Shape of imperfections 

In this paper the following three typical imperfections have been 

assumed in the upheaval buckling analysis [ 16 ]. Notice that among 

them imperfection No. 2 is the most common initial imperfection 

assumption used by the previous researchers, the sinusoidal profile 
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