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a  b  s  t  r  a  c  t

One  of the  major  difficulties  for scenario-based  decision-making  problems  (e.g.  stochastic  programming
using  scenarios)  is that the  problem  complexity  quickly  increases  as  the  number  of  scenarios  increases.
Scenario  reduction  aims  at selecting  a  small  number  of  scenarios  to represent  a  large  set  of  scenarios  for
decision  making,  so as to significantly  reduce  the computational  complexity  while  preserving  the solution
quality  of  using  a large  number  of  scenarios.  In this  work,  a new  computationally  efficient  scenario
reduction  algorithm  is  proposed  based  on  transportation  distance  minimization.  The  proposed  algorithm
relies  on  solving  linear  programming  problems.  The  scenario  subset  updating  step  and  the  probability
value  assignment  step  are  performed  in an  iterative  manner  until the  transportation  distance  converges.
Comparison  with  existing  scenario  reduction  methods  reveals  that  the  proposed  method  is  very  efficient
for  the  reduction  of  large  scenario  set.  Application  studies  on  stochastic  optimization  problems  also
demonstrate  the  effectiveness  of  the  proposed  method.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Uncertainty is pervasive in various decision-making problems
and there is a need for making optimal and reliable decisions in
the presence of uncertainty. While uncertainty can be incorpo-
rated into the decision-making problem, consideration of the exact
probability distribution in the optimization model often leads to
nonlinearity and computational difficulty of numerical integration.
As an alternative, scenario representation is widely used in solving
optimization problem under uncertainty because of its advantage
in modeling.

In reality, a huge number of scenarios may  need to be considered
due to the large number of uncertain parameters, which may result
in numerically intractable problems because of the limitation of the
computational resources. Therefore, it is necessary to find a subset
of scenarios which can best approximate the original large number
of scenarios. This induces the important topic of scenario-based
decision making, scenario reduction. Generally, scenario reduction
aims at selecting a few representative scenarios among the original
large number of scenarios, and new probabilities will be assigned
to each selected scenario.

Although it is an important topic, scenario reduction has
received limited attention in the past (Dupačová et al., 2003;
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Heitsch et al., 2006; Karuppiah et al., 2010). Among the existing
methods, the transportation distance (Rachev and Rüschendorf,
1998)-based scenario reduction was  shown to be one of the
most effective methods. A heuristic-based scenario reduction
method for stochastic programming was proposed in Heitsch and
Römisch (2003) and a corresponding tool SCENRED2 is available
in GAMS. Li and Floudas (2014) proposed a mixed integer lin-
ear optimization-(MILP) based scenario reduction method, which
rigorously minimizes the transportation distance (i.e. Kantorovich
distance) to find the optimal subset to represent the initial super-
set of scenarios. This method also considers the performance of
input and output space simultaneously. Although the MILP-based
scenario method can provide the optimal reduced subset of sce-
narios, the method is limited by the size of the problem. With
the state-of-the-art mixed integer linear optimization solver, the
method can only address moderate number of scenarios (i.e. up
to 5000). Li and Floudas (2015) recently proposed a method for the
reduction of the huge number of scenarios (e.g. 530) generated from
the factorial combination. A sequential reduction framework was
proposed which significantly reduce the computational complex-
ity. Some criteria for quantifying the quality of scenario reduction
were also proposed considering that it is impractical to evaluate
huge number of scenarios.

In this work, a linear programming (LP)-based scenario reduc-
tion method is proposed. The objective is to address the reduction
from a large set of scenarios (much more than 5000, and not neces-
sarily generated from the factorial combination). In the proposed

http://dx.doi.org/10.1016/j.compchemeng.2016.02.005
0098-1354/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2016.02.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.02.005&domain=pdf
mailto:zukui@ualberta.ca
dx.doi.org/10.1016/j.compchemeng.2016.02.005


Z. Li, Z. Li / Computers and Chemical Engineering 88 (2016) 50–58 51

Fig. 1. Transportation problem.

algorithm, the selected scenarios and the corresponding probabil-
ities are updated in two successive steps in an iterative fashion.
The first step calculates the probabilities based on a given set of
selected scenarios and the second step updates the selection of sce-
narios. Furthermore, the first step is solved based on a simple linear
programming problem and the second step only relies on simple
cost calculations. Hence, the computational complexity of the pro-
posed method is much less than the existing MILP-based method.
The proposed method works well for scenario set with a large size.
Various case studies were investigated to illustrate the proposed
algorithm. The effectiveness of the proposed method is also demon-
strated through comparison studies with the MILP-based scenario
reduction method (Li and Floudas, 2014) and the state-of-the art
scenario reduction tool SCENRED2 (Heitsch and Römisch, 2003).

The rest of the paper is organized as follows. Section 2 intro-
duces scenario reduction using transportation distance, and the
MILP-based scenario reduction method is reviewed for comparison
with the proposed algorithm. A linear programming-based scenario
reduction algorithm is presented and illustrated in Section 3. The
comparison studies are shown in Section 4. Section 5 studies an
application in chance constrained portfolio optimization and the
paper is concluded in Section 6.

2. Scenario reduction using mixed integer linear
optimization

The scenario reduction problem investigated in this paper can be
stated as following: Given a super set of scenarios/samples I, each
scenario is associated with a probability (not necessarily equal, but
their summation equals 1), remove N (a user-specified number)
scenarios from I and keep the rest scenarios as subset S, update the
probabilities of the preserved scenarios (so that their summation is
1), so as to minimize certain probability distance metric between
the distribution of the superset I and the distribution of subset S.

Transportation distance is used to quantify the cost of the mass
movement from one location to another. This is related to the Kan-
torovich transportation problem (Kantorovich, 1942) as shown in
Fig. 1: if P and Q are two distributions of mass and if c(x, y) rep-
resents the cost of transporting a unit of mass from the location
x to the location y, what is the minimal total transportation cost
to transfer P to Q? Transportation distance corresponding to the
cost function c(x, y) is defined as the minimal total transportation
cost. The above Kantorovich transportation distance is used in this
work to quantify the difference between I and S. If the difference
between them is less, the corresponding transportation distance
will also be smaller. In this paper, a scenario reduction is deemed
as “optimal” when the Transportation distance between the super
set of scenarios I and the selected subset S (with new probabilities)
are minimum.

Li and Floudas (2014) proposed a mixed integer linear opti-
mization formulation-based scenario reduction method based on
transportation distance minimization. The method was  designed to
address uncertainty in optimization problem, it not only considers
the input space (i.e. the values of uncertain parameters) but also
consider the output space (i.e. the objective value of optimization
problem). As a result, it leads to a reduced distribution not only close
to the original distribution in terms of the distance in input space,

but also captures the performance of the output. A simplified ver-
sion of the mixed integer programming-based scenario reduction
model (Li and Floudas, 2014) is presented as following

min
∑
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di (1a)
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∑
i ∈ I
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In the above model, i and i’ represent scenarios, I is the super-
set of all scenarios, porig

i
represent probability of scenario i in the

original discrete distribution (it is not necessarily equal proba-
bility 1/

∣∣I∣∣), di represent the cost of removing a scenario i and
transporting it to other preserved scenarios, binary variables yi
denote whether a scenario is removed (yi = 1) or preserved (yi = 0),
continuous variables vi,i′ denote the probability mass fraction
of scenario i that is transported to scenario i’, continuous vari-
ables pnew

i′ denote the new probabilities of the scenarios (pnew
i′ =

0 means scenario i’ is removed), ci,i′ is the transportation cost
between two scenarios which can be modeled using distance
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uncertain parameters in scenario i, �i =
{
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}
, cmax is the

maximum distance between two scenarios. According to Dupačová
et al. (2003), the new probability of a selected scenario can be eval-
uated with the following equation

pnew
i′ = (1  − yi′ ) porig

i′ +
∑
i ∈ I

vi,i′ p
orig
i

, ∀i′ ∈ I (2)

which means that new probability of a selected scenario is equal to
the sum of its former probability and of all probabilities of removed
scenarios that are transported to it. As a major limitation of the
above MILP-based scenario reduction model, it suffers from com-
binatorial difficulty for relatively large problems. For example, for
problem with more than 5000 scenarios, the MILP problem tends
to be intractable for solving with the state-of-the-art solvers.

3. Linear programming-based scenario reduction

To address the computational issue of solving a MILP problem,
a new method for scenario reduction is proposed in this work. The
proposed method consists of two major steps that work iteratively:
the first step calculates the probability assignment for a given set of
selected scenarios; the second step updates the selected scenarios
by evaluating the transportation cost. The algorithm stops once the
transportation cost converges. Detailed algorithm for each step and
the overall workflow is described below.

3.1. Probability mass transportation

If a subset of scenarios S is known as shown in Fig. 2, then the
optimal probability values of the selected scenarios that minimize
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