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a b s t r a c t 

Trapped waves are of considerable interest in providing examples of discrete wave frequencies in the presence 

of a continuous spectrum. Under the usual assumptions of linear water wave theory, the existence of trapped 

modes supported by a submerged horizontal circular cylinder in a two-layer fluid of finite depth bounded 

above by a thin ice-cover and below by an impermeable horizontal bottom is investigated. The effect of 

surface tension at the surface of separation is neglected. In this case, two trapped waves are developed: 

waves with the higher wavenumber at the interface and waves with the lower wavenumber at the ice-cover. 

In this problem, a fifth-order boundary condition is satisfied at the upper surface which makes the problem 

more complex. Using multipole expansion method, an infinite system of homogenous linear equations is 

obtained. For a fixed geometrical configuration and a specific arrangement of a set of other parameters, 

the frequencies for which the value of the truncated determinant is zero are numerically computed and the 

trapped wavenumbers corresponding to those frequencies are obtained by using the dispersion relation.These 

trapped modes are compared with those for which the ice-cover gets replaced by a free surface. We also look 

into the effect of the variation of ice-parameters on the existence of trapped modes. Further, trapped modes 

in a homogenous fluid of finite depth bounded above by a thin ice-cover are recovered. Trapped modes due 

to a cylinder placed in either of the layers are mainly confined to the vicinity of interface and ice-cover only. 

These modes, in our case, exist with a cut-off value though there are trapped modes which are embedded in 

the continuous spectrum. So, above that cut-off value and far from interface and ice-cover, it is possible to 

have a unique solution to the radiation problem for the cylinder placed in either of the layers. 
c © 2013 Elsevier Ltd. All rights reserved. 

1. Introduction 

Trapped modes are well-known in linear water wave theory. Most 

of the earlier works [ 1 –4 ] suggest that these modes occur at discrete 

frequencies below a certain cut-off frequency and consist of local 

oscillations trapped near a long horizontal submerged body in finite or 

infinite water depth or over a sloping beach. The existence of trapped 

modes is closely related to the non-uniqueness of a forced-motion 

problem since the difference between two solutions of the problem of 

a long submerged cylinder making small forced harmonic oscillations 

at a trapped mode frequency is the trapped mode itself and the usual 

radiation condition is not sufficient to guarantee uniqueness. 

It has been shown by John [ 5 ] that trapped modes do not oc- 

cur near a partially immersed non-bulbous body in a fluid of uni- 

form depth. Ursell [ 6 ] has shown that there are no two-dimensional 

trapped modes near a submerged circular cylinder in a canal. The 

existence of a trapped mode above a submerged horizontal circular 

cylinder in an infinitely deep water was first established by Ursell 

[ 1 ]. On the basis of full linearized theory of water waves, he showed 

that the existence of trapped waves depended upon the vanishing of 

a certain infinite determinant. The zeros of the determinant exist if 
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the radius of the cylinder was small compared to the length of the 

waves. This is not a physical restriction, as has been shown by Jones 

[ 7 ], who proved that trapped waves exist for a number of geometries 

including a submerged cylinder of any radius and a rectangular shelf 

adjoining a region of greater depth. McIver and Evans [ 2 ] showed nu- 

merically that there always exists at least one trapped mode above a 

cylinder of arbitrary size and that further modes are possible as the 

cylinder approaches the free surface. This trapped wave was observed 

by them during an experimental testing based on the oscillations of a 

horizontal submerged cylinder. Evidence for the existence of trapped 

mode, where the governing equation is the Helmholtz equation, is 

provided by the works of Evans and Linton [ 4 ] and Callan et al. [ 3 ]. 

They computed the frequencies of trapped modes which occurred 

in the vicinity of a vertical cylinder extending throughout the wa- 

ter depth, placed on the centreplane of an open channel with the 

cylinder considered symmetric with respect to both centreplane and 

vertical plane perpendicular to it. The trapped mode solutions were 

antisymmetric about the centreplane. Subsequently Evans et al. [ 8 ] 

proved the existence of trapped modes for a general class of cylinders, 

placed symmetrically with respect to the channel centreplane with 

the motion antisymmetric about the plane. Majority of the works in 

trapped wave problems employed an inverse procedure to construct 

particular surface-piercing or submerged trapping structures in both 
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two and three dimensions [ 9 –11 ]. These investigations show the ex- 

istence of a new type of trapped modes which are embedded in a 

continuous spectrum. 

In recent years the increase of human activities in the polar re- 

gions has amplified the necessity of investigations in the domain of 

ice cover dynamics. In order to understand the mechanism and the 

effects of wave propagation through the marginal ice zone in the po- 

lar regions, the ice-cover is modeled as a thin ice-sheet of which a 

very small part is immersed in water and is composed of materials 

having elastic properties. Unlike the case of plane gravity waves, in 

the presence of thin ice-cover, the upper surface boundary condition 

is of fifth order associated with the boundary value problem in which 

the governing equation is Laplace ’ s equation which is not of the stan- 

dard Sturm–Liouville type. Fox and Squire [ 12 ] developed a precise 

linearized model for the reflection and transmission process due to 

oblique waves at the margin of a sheet of shore fast sea ice. Chung and 

Fox [ 13 ] considered the interaction between the propagating waves 

and a semi-infinite ice sheet. They focussed on the calculation of the 

reflection of incident waves. Evans and Porter [ 14 ] analysed the prob- 

lem of scattering of obliquely incident waves by a narrow crack in an 

ice-sheet floating in water of finite depth. They also used Green ’ s func- 

tion approach to solve the same problem. Another important reason 

for investigation of water wave problems in which water is covered 

by a thin ice-sheet is due to their application in the construction of 

very large floating structures, like floating oil storage bases, floating 

runways, etc. 

It is not that only the wave motion at a free surface is of con- 

siderable interest, but there is also some significant interest in the 

generation of gravity waves at the interface of two fluids of different 

densities in which the upper fluid is covered by a rigid lid while the 

lower fluid is bounded below by a rigid horizontal bottom. Mohapatra 

and Bora [ 15 ] considered a three-dimensional problem involving the 

interaction of waves with a sphere. Multipole expansion method of 

Thorne [ 16 ] was used to evaluate the coefficients related to both heave 

and sway motions. The current authors have already investigated [ 17 ] 

the existence of trapped waves above a submerged horizontal circu- 

lar cylinder for such a case by using the multipole expansion method 

used by Ursell [ 1 ]. They numerically computed the trapped mode 

frequencies by finding the zeros of a suitably truncated determinant. 

In the above two classes of problems, there exists only one prop- 

agating wave. On the other hand, in the case of gravity wave prop- 

agation in a two-layer fluid having a thin ice-cover and an interface, 

two progressive waves exist which are generated at the upper sur- 

face and the interface. For example, (i) Bhattacharjee and Sahoo [ 18 ] 

obtained Fourier type expansion formulas and the related orthogonal 

mode-coupling relations for flexural gravity wave problems in a two- 

layer fluid; (ii) Mohapatra and Bora [ 19 ], by using linear water wave 

theory, investigated the scattering of oblique incident waves by small 

bottom undulations in a two-layer fluid where the upper surface was 

a thin ice-cover. Modified Helmholtz equation was solved, and the 

reflection and transmission coefficients were evaluated; (iii) Moha- 

patra and Bora [ 20 ] solved the scattering problem for a submerged 

sphere placed in one of the layers of the two-layer fluid and also com- 

puted the exciting forces for both horizontal and vertical directions; 

(iv) Mondal and Sahoo [ 21 ] analysed the effect of compressive force 

on flexural gravity waves in two-layer fluids. Wave characteristics 

for surface and interfacial modes in the cases of deep and shallow 

water were studied and generalized expansion formulas, along with 

associated orthogonal mode-coupling relations, were derived for the 

velocity potentials to deal with wave structure interaction problems 

in three dimensions in both the cases of finite and infinite water 

depths in channels of finite and semi-infinite widths. 

The flexural gravity wave propagation in a two-layer fluid has been 

investigated to a reasonable extent as substantiated by the above 

works. However, to the best of the authors ’ knowledge, no investiga- 

tion of flexural trapped waves in a two-layer fluid has taken place 

till date. Not many investigations have been carried out even for 

trapped modes for a two-layer fluid with a free surface. For exam- 

ple, (i) Kuznetsov [ 22 ] studied trapped modes in a channel spanned 

by a submerged cylinder in the (infinite) lower layer of a two-layer 

fluid. Using a perturbation method, he showed that there are two 

sets of trapped mode frequencies provided the density difference be- 

tween the two layers is small; (ii) Linton and Cadby [ 23 ] investigated 

trapped modes above a horizontal cylinder in a two-layer fluid con- 

sisting of a layer of finite depth on top of an infinitely deep layer of 

greater density; (iii) Nazarov and Videman [ 24 ] derived the general 

sufficient condition for wave trapping in a two-layer fluid in which it 

was shown in particular that a trapped mode always exists when the 

submerged body intersects neither the free surface nor the interface. 

The objective of the present work is to investigate whether a sub- 

merged horizontal circular cylinder in a two-layer fluid of finite depth 

bounded above by a thin ice-cover and below by an impermeable 

horizontal bottom supports trapped mode. In this case, two trapped 

waves are developed: the waves with higher wavenumber at the in- 

terface and the waves with lower wavenumber at the ice-cover. The 

wavenumbers of these waves are large compared to the wavenum- 

bers of the corresponding gravity waves. Furthermore, in these prob- 

lems, a fifth-order boundary condition is satisfied at the upper surface 

which makes the problem more complex. In order to examine the ex- 

istence of trapped modes, multipole expansion method of [ 1 ], along 

with the properties of infinite system of linear equations, is used. For 

a fixed geometrical configuration, we numerically estimate the values 

of those frequencies for which the trapped modes exist. The trapped 

mode wavenumbers are plotted against the density ratio for different 

depths of the upper layer, different depths of the lower layer, sub- 

mergence depths and different sets of ice-parameters. The dispersion 

curves for different geometrical configurations with a fixed set of the 

other parameters are also 

2. Mathematical formulation of the problem 

As the first step towards the formulation of our problem, the inci- 

dent potential of the progressive wave is to be obtained by applying 

the governing equation and the related boundary conditions. Under 

the usual assumptions of linear water wave theory, the problem is 

considered in three dimensional Cartesian coordinate system with ( x , 

y ) plane in the horizontal direction and z -axis in the vertically upward 

direction. A two-layer fluid of finite depth is considered in which the 

upper layer is covered by a thin uniform ice-sheet modelled as a thin 

elastic plate, while the lower layer is bounded by a rigid infinite hor- 

izontal bottom. The upper fluid layer of constant density ρI occupies 

the region 0 < z < d , − ∞ < x < ∞ , − ∞ < y < ∞ with z = d as 

the mean position of the thin ice-cover. The lower fluid of constant 

density ρ
II 

occupies the region − h < z < 0, − ∞ < x < ∞ , − ∞ < y 

< ∞ with z = 0 as the mean position of the interface and z = −h as 

the bottom surface (Fig. 1). The effect due to surface tension at the 

interface between the two fluids is neglected. With the fluid assumed 

to be inviscid and incompressible, and the motion irrotational, the 

fluid motion is described by the two velocity potentials Φ j ( x , y , z, t) , j 

= I , II . Let η ( x , y , z , t ) and ζ ( x , y , z , t ) be the small displacement at the 

upper surface and the interface, respectively. 
The velocity potentials Φ j ( x , y , z, t) satisfy the partial differential 

equation 

∂ 2 Φ
j 

∂x 2 
+ 

∂ 2 Φ
j 

∂y 2 
+ 

∂ 2 Φ
j 

∂z 2 
= 0 in the appropiate fluid region . (1) 

The linearized kinematic conditions at the mean free surface and 

the mean interface, respectively, are given by 

∂η

∂t 
= 

∂ΦI 

∂z 
on z = d, (2) 
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