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a b s t r a c t

The reduction of energy consumption for high speed submersible bodies is an important challenge in
hydrodynamic researches. Supercavitation is a hydrodynamic process in which a submerged body gets
enveloped in a layer of gas. As the density and viscosity of the gas is much lower than that of seawater,
skin friction drag can be reduced considerably. If the nose of the body (cavitator) has a proper shape, the
attendant pressure drag remains at a very low value, so the overall body drag reduces significantly. Total
drag force acting on the supercavitating self-propelledprojectiles dictates the amount of fuel consumption
and thrust requirements for the propulsion system to maintain a required cavity at the operating speed.
Therefore, any reduction in the drag coefficient, bymodifying the shape of the cavitator to achieve optimal
shape, will lead to a decrease of this force. Themain objective of this study is to optimize the axisymmetric
cavitator shape in order to decrease the drag coefficient of a specified after-body length and body velocity
in the axisymmetric supercavitating potential flow. To achieve this goal, a multi-objective optimization
problem is defined. NSGA II, which stands for Non-dominated Sorting Genetic Algorithm, is used as the
optimization method in this study. Design parameters and constraints are obtained according to the
supercavitating flow characteristics and cavitator modeling. Then objective functions will be generated
using the Linear Regression Method. The results of the NSGA II algorithm are compared with those
generated by the weighted summethod as a classic optimization method. The predictions of the NSGA II
algorithm seem to be excellent. As a result, the optimal cavitator’s shapes are similar to a cone.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Supercavitation is the extreme form of cavitation, in which
a single bubble of gas forms around a body moving rapidly
through water, such as a projectile (Fig. 1). The bubble envelops
the body in such a way that the water wets very little of the
body’s surface, thereby drastically reducing viscous drag. In order
to generate a cavity enclosing the entire supercavitating self-
propelled supercavitating body, the supercavitating body should
have such a high thrust resulting in the required speed to
counteract the effect of drag. Usually the drag divides into to
two types of drag, pressure drag and viscous drag. In the case of
supercavitation, the pressure drag is considerably higher than the
viscous drag, since the fluid flow does not touch the body. As a
result, the viscous drag is ignored in this work. The pressure drag
can be calculated using the integral of the pressure distribution,
caused by the fluid flow, over the nose of the supercavitating body.
The shape of the nose section, which is called the cavitator, is
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significant in the case of a supercavitating self-propelled projectile,
because it not only affects the generated cavity size, but also
determines the magnitude of the drag force. Since the projectile
is required to operate under high speeds, a reduction of the drag
is the major design factor. Therefore, the objective of this study is
finding the optimum shape of the cavitator that gives the required
cavity size while producing minimum drag force.

In the process of cavitator shape optimization, supercavitating
flow analysis needs to be carried out during each iteration of
cavitator design calculations. This analysis, however, is a kind of
free boundary value problem (BVP), which requires the use of an
iterative scheme to reach the solution. In this problem, the shape of
the cavity boundary is not known at first, while two conditions are
imposed on the boundary: impermeability and constant pressure
condition. The cavitator shape should be determined in such a
way to meet these boundary conditions simultaneously. Due to
this requirement, there have been many efforts to find an efficient
solution process for the supercavitating flow problem.

Early research on supercavitating flows was performed by
Reichardt [1], who experimentally studied the axisymmetric su-
percavitating flows. Efros [2] employed conformal mapping tech-
niques to investigate the supercavitating flow problems. Tulin [3]
introduced the use of perturbationmethods for examination of two
dimensional supercavitating flows. Cuthbert and Street [4] used
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Nomenclature

b Cavitator geometric parameter
CD Drag Coefficient
Cp Pressure coefficient
D Drag
f1 Objective function
f2 Objective function
L Cavity length
−→n Unit vector
P Water pressure
Pc Cavity pressure
R Cavitator radius
Sc Cavity surface
Sb Body surface
U∞ Free stream velocity
Φ Total potential
ϕ Disturbance potential
Γ Body-cavity surface
σ Cavitation number
ω Cavitator geometric parameter.

sources and sinks along the axis of a slender axisymmetric body
cavity system, along with a Riabouchinsky cavity closure model.
They solved the problem for the unknown cavity shape, but they
were successful only in a few cases. Brennen [5] employed a re-
laxation method in a transformed velocity potential-stream func-
tion plane for analyzing axisymmetric cavitating flows behind a
disk and a sphere between solid walls. Chou [6] extended the work
of Cuthbert and Street [4] to solve axisymmetric supercavitating
flows using slender body theory. Until the 1970s, the analytical
methods were the most important ones to solve the supercavitat-
ing flow problems. Beginning in 1980, some numerical methods
were also developed. Aitchison [7] used amethod of variable finite
elements to consider the flowpast a disk in a tube of finite diameter
and infinite length. Uhlman [8] used the surface singularitymethod
to solve the fully nonlinear potential flow past a supercavitating
flat-plate hydrofoil numerically. Hase [9] employed interior source
methods for modeling the planar and axisymmetric supercavitat-
ing flows. Verghese, Uhlman and Kirschner [10] used the boundary
elementmethod for numerical analysis of high speed bodies in par-
tially cavitating axisymmetric flow. Shafaghat et al. [11] used the
boundary element method for numerical analysis of axisymmetric
unbounded supercavitating flows.

For a self-propelled supercavitating body, the propulsion
system provides the required thrust which is proportional to
the drag acting on body. The propulsion system keeps the
high speed motion of the body. Thus, any decreasing in the
thrust by modifying the shape of the cavitator is desirable.
Kinnas et al. [12] and Mishima &Kinnas [13] studied the
flow around the supercavitating hydrofoils and supercavitating
wings and obtained the optimized shape of hydrofoils, using
the Lagrange multiplier method. Mishima [14] presented his
studies on cavitator modeling and hydrofoil optimization using
method of multipliers and penalty parameter update schemes
in both constrained and unconstrained optimization problems.
Alyanak et al. [15] have designed the variable shape of cavitators.
They have adjusted the cavitator’s parameters to obtain the
optimized cavitator shape of a supercavitating torpedo. They
introduced some non-dimensional parameters in their cavitator
modeling [16]. Choi [17] has investigated the cavitator shape
optimization procedure using design sensitively analysis. He used
a different method for geometric definition of the cavitator
in his work. It is noticeable that all researchers have used a

Fig. 1. Supercavitating projectile enclosed by a cavity.

type of gradient method to optimize the shape of cavitators
or hydrofoils. These methods have been generally criticized for
their problems obtaining optimum points in uneven and non-
continuous objective functions. Shafaghat et al. used a non-
gradient optimization method in order to obtain an optimized
cavitator shape [18]. The final results of their work were very
suitable. So, a non-gradient method is considered in this paper
in order to optimize the shape of axisymmetric cavitators. The
genetic-base optimization methods utilize a sorting algorithm to
obtain optimum points in the domain of interest. In this study, a
multi-objective genetic algorithm is selected to optimize cavitator
shape.

It is confirmed by previous studies [11] that the potential
flow assumption is accurate enough for supercavitating flow
analysis. Usually, the main parameters in supercavitating flows
are the geometry of the cavity and cavitator and also the
cavitation number. Having specified objective functions and
design parameters, amulti-objective optimization problem is used
to minimize the drag coefficient and maximize the cavitation
number. The required input data for this investigation is produced
using a powerful software pack (developed by the authors) [11]
and the so called NSGA II [19,20] optimization algorithm.

Themathematical formulation of axisymmetric supercavitating
flowaround the axisymmetric cavitator (such as a cone) comes first
from a previous study [11] in the next part. Then, the general for-
mulation for calculating the drag coefficient of axisymmetric cav-
itators in the axisymmetric supercavitating flows (with potential
flow assumption) will be introduced. Finally, the optimum shape
for the axisymmetric cavitatorswill be determined using the NSGA
II algorithm.

2. Mathematical formulation of axisymmetric supercavitating
flow

Consider the unbounded, steady and irrotational flow of
an inviscid and incompressible liquid past a supercavitating
axisymmetric cavitator (such as a cone) placed at a zero degree
angle of attack in the flow direction (Fig. 2).

The flow is then a potential flowandhence possesses a potential
function, Φ , which in the fluid satisfies Laplace’s equation:
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where Φ is the total potential. A disturbance potential, ϕ, can be
defined from the total potential by:
Φ = U∞z + ϕ (2)
where, U∞ is the free stream velocity. So that the disturbance
velocity is given by the gradient of the disturbance potential, the
disturbance potential also obeys Laplace’s equation:
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