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a  b  s  t  r  a  c  t

A  generalized  approach  for  the  calculation  of complex  chemical  and  phase  equilibria  is  presented  that  is
based  on  the  simulation  of the  dynamic  evolution  of a mixture  from  non-equilibrium  initial  composition
towards  the  final  equilibrium  composition.  The  proposed  method  is  able  to solve  pure chemical  or  phase
equilibria  as  well  as  simultaneous  chemical/phase  equilibria.  The  advantage  of  our approach  compared
to  conventional  equilibrium  calculations  is the  fact  that  the  approach  is physically  motivated  and  can
handle  chemical  and  phase  equilibria  as well  as  simultaneous  chemical  and  phase  equilibria.
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1. Introduction

In process simulation a variety of thermodynamic equilibria
such as reaction equilibria and phase equilibria between two or
more phases have to be solved in various process units, e.g. for
reaction as well as separation. It is common that for different
types of equilibria diverse mathematical approaches are applied.
For reaction equilibria, the most common approach is the direct
Gibbs energy minimization which formulates the equilibrium con-
dition in terms of an optimization problem (Lwin, 2000; Gmehling
et al., 2012). In the case of phase equilibria such as vapour–liquid
equilibria (VLE) or liquid–liquid equilibria (LLE) a set of algorithms
is available that solve the thermodynamic conditions to be fulfilled
at the equilibrium state namely the equality of the chemical poten-
tials of all species in the coexisting phases at constant pressure and
temperature (Lucia et al., 2000; Poling et al., 2007).

The approach of reformulating algebraic models as differential
equations and solve them up to their steady state in chemical engi-
neering dates back to Ketchum (1979). In this contribution, we
propose a general approach based on the solution of a set of ordi-
nary differential equations (ODE) that is able to handle chemical as
well as phase equilibria. This solution strategy is physically moti-
vated by the mass fluxes between phases or as a consequence of
chemical reactions. The proposed approach is able to handle chemi-
cal and phase equilibria as well as simultaneous chemical and phase
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equilibria, and therefore it is also suitable for the simultaneous
solution of an overall process flowsheet.

In the next section we introduce the mathematical formulation
of the dynamic method. After that we apply it to several examples
and show that it is able to solve equilibrium problems of different
complexity.

A brief overview of the proposed method was published in a pre-
vious work (Zinser et al., 2015). In this contribution, we  give a more
comprehensive summary and exemplify the applicability with sev-
eral case studies. Additionally, we compare our dynamic method
with the conventional Gibbs energy minimization technique. An
approach for the reduction of the resulting set of evolution equa-
tions in multiphase systems is presented as well.

2. Method formulation

We assume a set of phases P that may  occur in the considered
system. For example, P = {V, L1, L2}, refers to a VLL-system with
one vapour phase (V) and two liquid phases (L1 and L2). Addi-
tionally, in each phase � ∈ P a set S� of species may  occur. In
many systems, every species is allowed to occur in every phase,
i.e. S = S� ∀� ∈ P. In some systems, it is not possible to com-
pute the fugacities for every component in every phase such as
systems including non-condensable gases, molecular salts, and
ions.

For computing the thermodynamic phase equilibrium of a p-
phase system with s species, up to sp(p − 1)/2 rate expressions r�,�′

˛

are required that describe the molar fluxes of all species  ̨ ∈ S
between the phases � and �′ with �, �′ ∈ P and � /= �′, see also
Fig. 1 (left).
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Fig. 1. General VLL system with the fluxes r�,�′
˛ between the three phases (left) and the fluxes r�

� due to chemical reactions (right).

Additionally, in each phase � ∈ P may  occur a set of chemical
reactions � ∈ R� as shown in Fig. 1 (right).

The proposed methodological approach for solving chemical as
well as phase equilibria is formulated as a set of ordinary differential
equations

dn
d�
= Ar (1)

that describes the evolution of the molar compositions in each
phase

n =
[
n�
]

� ∈ P with n� =
[
n�

˛

]
 ̨∈ S� (2)

w. r. t. time �. Here, A is the stoichiometric matrix and r is a vector
of rate expressions that describes the fluxes between the phases
as well as the fluxes due to chemical reactions. The stoichiometric
matrix

A = [ Ap Ar ] (3)

consists of a part Ap that models the interactions between the
phases and a part Ar that models the stoichiometry of the chem-
ical reactions in each phase. In the same way the vector of rate
expressions

r =
[

rp

rr

]
(4)

consists of two parts: one for the rates of the phase transitions rp,
i.e. the mass fluxes between the phases, and one for the chemical
reaction rates rr.

All the above rate expressions are constructed in a thermody-
namic consistent way so that the steady state of the ODE system
(1) corresponds to the molar composition of the system in thermo-
dynamic equilibrium.

2.1. Phase transitions

This section assumes that the set of species S applies to all phases
� ∈ P, i.e. every component may  exist in every phase. The case that
each phase defines its own set of allowable species S� is discussed
in the next section. The rate expressions for mass transfer of the
species between the phases are

rp =
[
r�,�′]

�, �′ ∈ P
�  /=  �′

with r�,�′ =
[

r�,�′
˛

]
 ̨∈ S

. (5)

They are directly derived from the thermodynamic equilibrium
condition, i.e. equal fugacities, between the two phases � and �′

f �
˛ = f �′

˛ . (6)

This leads to the rate expression

r�,�′
˛ = k�,�′

˛

(
f �
˛ − f �′

˛

)
(7)

Table 1
Number of dynamic states ns and the number of rate expressions nr as function of
the  number of phases p and the number of species s in a system.

Phases p 1 2 3 4 p

States ns s 2s 3s 4s ps
Rates nr 0 s 3s 6s 1

2 p(p − 1)s

which describes a measure for the distance between equilibrium
and non-equilibrium state. This rate becomes r�,�′

˛ = 0 if the ther-
modynamic phase equilibrium is reached. The rate constant k�,�′

˛

describes the rate of mass transfer. Due to the fact, that we are
interested in the steady state of the ODE system (1), this constant
has no physical meaning and can be set to an arbitrary value, e.g.
k�,�′

˛ = 1, or, it can be used as a parameter to adjust the numerical
performance of the ODE solver. With the definitions of the fugacity
coefficients ϕ�

˛ and activity coefficients ��
˛ the fugacities f �

˛ can be
written as

f �
˛ = x�

˛ϕ�
˛P (8a)

or

f �
˛ = x�

˛��
˛ f ◦�˛ (8b)

where the standard fugacity f ◦�˛ can be set to the standard pressure
f ◦�˛ = P◦ = 101,325 Pa.

Eq. (8a) can be applied to gaseous as well as liquid phases. The
fugacity coefficients ϕ�

˛ can be obtained from an Equation of State
(EoS). In this work, we use the predictive Soave–Redlich–Kwong
(PSRK) EoS (Holderbaum and Gmehling, 1991; Gmehling et al.,
2012, p. 312).

Eq. (8b) is applied to liquid phases and the activity coefficient ��
˛

can be computed from an activity coefficient model, such as NRTL
or UNIQUAC. In this work we use the group contribution method
UNIFAC (Gmehling et al., 2012).

In the case of a two-phase system, e.g. a VL or LL system, the
stoichiometric matrix Ap as well as the corresponding vector of
rate expressions rp is given by

Ap =
[
−I

I

]
, rp = [ r�1,�2 ]. (9a)

and for a three-phase system such as a VLL system Ap and rp are
given by

Ap =

⎡
⎣−I −I 0

I 0 −I

0 I I

⎤
⎦ , rp =

⎡
⎢⎣

r�1,�2

r�1,�3

r�2,�3

⎤
⎥⎦ . (9b)

The overall number of dynamic states ns as well as the number
of rate expressions nr that are required are given in Table 1.

If in a three phase system one phase � is in equilibrium with
the other phases �′ and �′′, the phase �′ is also in equilibrium with
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