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a  b  s  t  r  a  c  t

Continuous  sedimentation  processes  in  a clarifier-thickener  unit  can  be  described  by  a scalar  nonlinear
conservation  law  whose  flux  density  function  is discontinuous  with  respect  to  the  spatial  position.  In
the  applications  of  this  model,  which  include  mineral  processing  and  wastewater  treatment,  the  rate  and
composition  of  the  feed  flow  cannot  be given  deterministically.  Efficient  numerical  simulation  is  required
to quantify  the  effect  of uncertainty  in  these  control  parameters  in terms  of  the  response  of  the  clarifier-
thickener  system.  Thus,  the  problem  at hand  is one  of uncertainty  quantification  for  nonlinear  hyperbolic
problems  with several  random  perturbations.  The  presented  hybrid  stochastic  Galerkin  method  is  devised
so as to extend  the  polynomial  chaos approximation  by multiresolution  discretization  in  the  stochastic
space.  This  approach  leads  to a deterministic  hyperbolic  system,  which  is  partially  decoupled  and  there-
fore  suitable  for  efficient  parallelisation.  Stochastic  adaptivity  reduces  the  computational  effort.  Several
numerical  experiments  are  presented.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

1.1. Scope

In many technical applications one seeks to quantify the
stochastic variability of the response of a nonlinear system, usu-
ally defined in terms of a partial differential equation (PDE), with
respect to uncertainty in initial conditions, control parameters and
coefficient functions. This uncertainty can be quantified by aleatoric
variation of parameters and sampling corresponding solutions in a
“Monte Carlo (MC)”-like manner. This method is easy to implement
but very inefficient due to the slow convergence in the sampling
variable. One therefore prefers deterministic models for at least
a finite number of stochastic moments to quantify randomness
(an overview is given by Matthies and Keese (2005)). For instance,
stochastic Galerkin (SG) or collocation methods seem to be more
promising to handle the present situation. This approach is well
understood for models governed by linear PDEs. We  herein focus
on nonlinear problems posed by hyperbolic conservation laws, and
thereby complement recent efforts in uncertainty quantification
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for nonlinear problems considered by Poëtte et al. (2009), Tryoen
et al. (2010, 2012), and Abgrall and Congedo (2013).

It is the purpose of this paper to extend the hybrid stochastic
Galerkin (HSG) discretization introduced by Bürger et al. (2014),
Köppel et al. (2014), and Kröker et al. (2015) to several stochas-
tic dimensions, and to apply it to a model governed by a scalar,
nonlinear hyperbolic conservation law. Specifically, we consider a
clarifier-thickener (CT) model for the continuous solid-liquid sepa-
ration of suspensions under gravity discussed by Bürger et al. (2004,
2012a), Betancourt et al. (2013), Diehl (1996a, 2001, 2005, 2006,
2008) and Nocoń (2006), see Fig. 1. Bürger et al. (2005) introduced
this strongly idealised description of secondary settling tanks in
wastewater treatment or thickeners in mineral processing. For
suspensions of small solid particles in a fluid, the governing PDE
is a first-order scalar conservation law with a flux density func-
tion that depends spatially on position. For the discussion on the
well-posedness and numerical analysis of this equation we refer
to Chancelier et al. (1994), Diehl (1996a,b, 2001, 2005, 2006, 2008)
and Bürger et al. (2004, 2005).

In the clarifier-thickener and related multiphase flow models,
many input parameters cannot be described with determinis-
tic accuracy but behave stochastically. For instance, in mineral
processing the uncertainty comes from the fact that the feed
flow stems from other units that are not under control of the
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Fig. 1. Principle of the clarifier-thickener (CT) model. The cylindrical unit of cross-
sectional area A occupies the depth interval [xL, xR]. Suspension to be separated is fed
at  level x = 0 at rate QF and concentration uF. The feed flow is split into upward- and
downward-directed bulk flows with respective velocities qL ≤ 0 and qR ≥ 0. In the
deterministic setting, uF, QF and qR, and therefore also qL, are known control param-
eters. Under normal circumstances, concentrated sediment forms on the bottom of
the thickening zone and is continuously removed with the underflow while clarified
liquid laves the unit with the overflow. It is assumed that the solid-liquid separation
takes place within the unit only, identified by the x-interval (xL, xR), while outside,
in  the overflow and underflow streams, both phases move at the same velocity.

CT operator, while in wastewater treatment weather conditions,
which may  affect the operation of the unit, are unpredictable.
Bürger et al. (2014) analysed the effect of uncertainty in the feed
concentration uF. This uncertainty produces a first-order scalar
conservation law with a random flux function. In this work we
provide a new efficient method for evaluating the uncertainty
of the response of the system, that is, of the exact or numerical
solution of the governing PDE, in terms of the uncertainty in
three control parameters, namely uF and the so-called bulk flows,
denoted by qL and qR. (Uncertainty in qL and qR can equivalently
be expressed as uncertainty in the volume feed flow, equivalent to
qR− qL, and in CT control actions, which are expressed by qR.)

To provide further justification of our approach we  mention
that utilizing spatially one-dimensional descriptions of clarifier-
thickener units (known as secondary settling tanks (SSTs) in
wastewater treatment) is common practice in engineering applica-
tions. For simulation, design, and control computation one wishes
to avoid the necessity to compute a two- or three-dimensional
flow field since this invariably incurs the necessity to solve addi-
tional equations, namely versions of the Stokes or Navier–Stokes
equations, to determine the flow field for the mixture. However,
experimental observations, numerical simulations and practical
considerations (Ekama and Marais, 2004; Bürger et al., 2015)
indicate that for moderate to high concentrations the solids concen-
trations is nearly horizontally constant, and that the sedimentation
process can be captured by a one-dimensional (vertical) model.
In fact, one-dimensional models that at least for the special
case of non-flocculated suspensions are equivalent to the present
approach were studied among others by Abusam and Keesman
(2009), Chancelier et al. (1994), David et al. (2009a,b), Diehl (2001,
2005, 2006, 2008), Guo et al. (2010), Li and Stenstrom (2015), Nocoń
(2006), Plósz et al. (2007), and Verdickt et al. (2005). (This list is far
from being complete, and we here limit ourselves to works by alter-
nate authors.) Furthermore, works that explicitly address models
of this type to analyze the system response to stochastic variations
of input parameters, and possible strategies to control the system
behaviour, include those by Betancourt et al. (2013), Guyonvarch
et al. (2015) and Torfs et al. (2015). In light of all these refer-
ences the model and numerical methods presented for its solution
herein correspond to the state of the art and widespread practice
in clarifier-thickener modeling, even though the process model is
in itself a simplification of a real-world clarifier-thickener.

As a classical approach in random perturbed PDEs one could
apply the SG method for uncertainty quantification. This method

is based on representing the random field by a truncated sum
of orthonormal polynomials. Poëtte et al. (2009) showed that
this approach leads to a very accurate approximation in terms
of a strongly coupled, high-dimensional deterministic system for
a finite number of moments. Tryoen et al. (2012) presented an
alternative approach obtained by the multi-wavelet stochastic
discretization, which still leads to a full coupling of the polyno-
mial basis that is defined on the whole stochastic domain. Our
approach consists in a combination of both concepts, namely we
devise a hybrid stochastic Galerkin (HSG) method that combines
polynomial chaos (PC) and multi-wavelet representations. As a
consequence, each stochastic element is equipped with its own
polynomial basis. This combination has the decisive advantage that
the HSG method leads to a partially decoupled deterministic sys-
tem that allows efficient parallelization. Furthermore, we improve
the efficiency of the HSG method by adaptive multiresolution in
the stochastic space (we  also refer to Le Maître et al. (2004) and
Bürger et al. (2014) for adaptive approaches in the framework of
multi-resolution techniques).

1.2. Outline of the paper

The remainder of the paper is organized as follows. In Section
2 the governing model is described. To this end, we summarize in
Section 2.1 a deterministic, spatially one-dimensional CT model
(cf. Fig. 1). In Section 2.2 we  include the random perturbations.
In Section 3 we  introduce an approximation for the random per-
turbations by the SG and the new HSG approaches. Specifically,
we review the PC approach in Section 3.1 and define in Section
3.3 the SG system. This leads after a finite volume discretization
in the one-dimensional physical space to the stochastic Galerkin
finite volume (SG-FV) method. In Section 3.4 we extend the SG
stochastic discretisation to the HSG approach. In Section 3.4.1 we
explain how the coefficients of the HSG representation are cal-
culated. Next, in Section 3.4.2 the HSG approach is extended to
several stochastic dimensions and in Section 3.4.3 applied to the
clarifier-thickener model. A fully discrete finite volume formula-
tion for the SG approaches, namely the respective “HSG-system” is
introduced in Section 3.4.4 (HSG-FV). The further improvement of
the method is stochastic adaptivity (denoted as HSG-adapt), which
is introduced in Section 4. The HSG-adapt method reduces the
stochastic dimension and increases the computational efficiency
decisively. Section 4 starts with a short description of properties
of the multi-wavelet basis in Section 4.1 and proceeds with the
extension to the multivariate case in Section 4.2. In Section 4.3
we recapitulate the concept of the graded tree and introduce an
Nr-adaptivity algorithm for the HSG-discretization based on this
concept. Section 5 is devoted to the presentation of numerical
examples. In Section 5.1 we present experiments in two and three
stochastic dimensions and compare the HSG-FV results with those
of a Monte Carlo approach. In Section 5.2 we discuss the benefits
of the parallel application for HSG methods. The numerical exper-
iments in Section 5.3 confirm the efficiency and accuracy of the
HSG-adapt method. In Section 6 we  present the application of the
HSG approach to the real world problem. Conclusions of the paper
are summarized in Section 7.

2. Governing models

2.1. Deterministic version

The CT model is based on the conservation equations of the solid
and the fluid. Both are considered as superimposed continuous
phases with velocities vs and vf, respectively. In terms of the solid-
fluid relative velocity vr:=vs − vf and the volume-average velocity
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