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a  b  s  t  r  a  c  t

A  dynamic  model-based  sensor  network  design  (DMSND)  algorithm  has  been  developed  for  maximizing
system  efficiency  for  an  estimator-based  control  system.  The  algorithm  synthesizes  the  optimal  sensor
network  in  the face  of  disturbances  or set  point  changes.  Computational  expense  of the  large-scale  com-
binatorial optimization  problem  is significantly  reduced  by  parallel  computing  and  by  using combination
of  three  novel  strategies:  multi-rate  sampling  frequency,  model  order  reduction,  and  use  of  an incumbent
solution  that  enables  early  termination  of  evaluation  of  infeasible  sensor  sets.  The  developed  algorithm
is  applied  to an  acid  gas  removal  unit  as part  of  an  integrated  gasification  combined  cycle  power  plant
with  carbon  capture.  Even  though  there  are  more  than  thousand  process  states  and  more  than  hundred
candidate  sensor  locations,  the  optimal  sensor  network  design  problem  for maximizing  process  efficiency
could  be  solved  within  couple  of  hours  for a  given  budget.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A systematic approach to sensor network design (SND) is of
prime importance in order to achieve an economic and efficient
measurement network for optimal plant operation, monitoring,
and control. Typical chemical processes have a large number of
possible locations for measurements and it is not economically
or practically viable to measure all the variables. Some of the
variables that are measured may  have very low precision, low
signal-to-noise ratio and low reliability. Such measurements might
lead the process operation to a suboptimal condition and result
in degraded process performance. In practice, process variables
are measured either for monitoring or control purposes. Process
monitoring is an indispensable part of any process operation to
ensure compliance with environmental emission standards and
avoidance of safety hazards and unwanted products. Monitoring
equipment health is also very important to detect and circum-
vent any undesired conditions. Regarding process control, some
controlled variables especially those obtained by steady-state eco-
nomic analysis (Skogestad, 2004) can have significant impact on
process performance. Thus, it is of prime importance to find an
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optimal sensor network that can ensure satisfactory process per-
formance subject to the economic and operational constraints.

Sensor placement problem has been an active area of research in
last several decades. Sahraei et al. (2014) have presented a compre-
hensive literature review on the sensor placement methodologies
and control strategies to improve power plant efficiency. The tra-
ditional SND algorithms that have been presented in the existing
literature have mostly considered static process conditions. These
algorithms will be called steady-state SND (SSND) algorithms. Lee
and Diwekar (2012) have developed an optimal sensor placement
algorithm for advanced power plants where a stochastic integer
programming problem is solved to maximize the Fisher informa-
tion subject to budget constraints. Nabil and Narasimhan (2012)
have considered static process operation for determining a redun-
dant sensor network from a data reconciliation perspective and
for minimizing the loss of operational profit due to measurement
error subject to an available resource limit. Ali (1993) and Ali and
Narasimhan (1993, 1995, 1996) have used a steady-state process
model for maximizing reliability of the sensor network for given
sensor failure rates. Kelly and Zyngier (2008) have minimized the
overall instrumentation cost subject to the constraints on software
and hardware redundancy of measured variables and observability
of unmeasured variables and their precision. Carnero et al. (2001,
2005) have considered steady-state process operation and obtained
an optimal design of non-redundant observable linear sensor
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Nomenclature

A process transition matrix
a power consumption coefficient due to solvent

regeneration
B input matrix
b  scalar budget ($)
C measurement matrix
ci cost of individual sensor ($)
d disturbance
F flowrate (mol/h)
Gen number of generations in GA
K Kalman gain matrix
Kc proportional gain of P-only controller
� weighting factor for incumbent solution
� weighting factor for estimation error
Ns total number of candidate sensor
n number of states
P pressure
P state error variance–covariance matrix
Pc consumed power (MWh)
Q process noise variance–covariance matrix
q process variables for which a desired estimation

accuracy is desired
R measurement noise variance–covariance matrix
T temperature, settling time
t time (h)
�I reset time
W weighting factor
u control inputs
ud vector of disturbance and control inputs
v measurement noise vector
w process noise vector
x vector of states
x̂ vector of estimated states
y vector of measurements
ŷ vector of estimated variables
ε(t) deviation of the controlled variable from set point

Subscripts
act actual variable

 ̌ decision variable vector of binary number (0 and 1)
cont control/controlled variable
CO2 carbon dioxide
est estimated/estimator-based
in inlet or, input
incum incumbent
ma  process monitoring variables and active constraints
mon  monitoring variables
opt optimal
r reduced order model
set desired set point
solvent selexol solvent
ss steady state
term termination
(.)i ith tray

networks. Kretsovalis and Mah  (1987) minimized an objective
function of the weighted average of the cost of the measurements
and the precision of the estimates. The authors used the trace
of the steady-state process error covariance matrix and showed
that redundancy in measurements improved the estimation accu-
racy. SND from an economic perspective has been presented by
Bagajewicz and Markowski (2003), Bagajewicz (2005a) where the

authors obtained an expression for assessing the value of precision.
More recently, Bagajewicz (2005b) has extended the economic
value of precision by introducing the effect of induced bias obtained
by evaluating the economic value of accuracy. Bagajewicz et al.
(2005), Bagajewicz (2006), Bagajewicz and Nguyen (2008) have
also investigated economic value of data reconciliation and instru-
mentation upgrades. Peng and Chmielewski (2006, 2005) have
placed sensors from the controls perspective. The authors have
developed algorithm for simultaneous selection of sensors as well
as minimal backed-off operating points by maximizing the operat-
ing profit.

Since the SSND algorithms optimize a steady-state objective,
the transient performance of the sensor network can lead to sub-
optimal plant performance. DMSND algorithms are limited in the
existing literature. Kadu et al. (2008) have considered a discrete
linear time invariant system with multi-rate extension of the basic
Kalman filtering algorithm to show the effect of various measure-
ment sampling rates on state estimation. To find Pareto optimal
solutions for the optimal sensor network, they considered dual
objective functions, namely maximizing the quality of estimates
and minimizing the measurement cost subject to a constraint on
system detectability. Mellefont and Sargent (1978) developed an
implicit enumeration algorithm using a linear stochastic system
for selection of measurements to be used in optimal feedback con-
trol. This algorithm minimizes both the measurement cost and a
quadratic function of the covariance of state prediction error with
minimum number of measurements.

Other than different objectives considered for the SND problem,
different computational methods have also been developed in the
open literature for designing optimal SND. A tree search approach
has been used by Bagajewicz (1997), Bagajewicz and Sanchez
(2000) and Bagajewicz and Cabrera (2002) to solve a mixed integer
problem and obtain a cost optimal sensor network subject to
the constraints on estimation precision, availability, resilience,
error detectability, hardware redundancy, and reliability. Later an
equation-based tree search method for the design of a nonlinear
sensor network was presented by Nguyen and Bagajewicz (2008,
2013). The genetic algorithm (GA) has been used by Zumoffen
and Basualdo (2010). A graph theoretic approach has been used
by Meyer et al. (1994) and Luong et al. (1994) to design a sensor
network for process monitoring. An approach combining the
GA and graph theoretic approaches has been developed by Sen
et al. (1998) to synthesize a non-redundant SND algorithm for
linear processes. Madron and Veverka (1992) have adopted a
Gauss-Jordan elimination method to optimize overall measure-
ment cost and overall precision of a system. Recently, a stochastic
optimization-based method has been proposed by Ghosh et al.
(2014) to identify an optimal subset of measured variables for
effective statistical process monitoring.

Computational expense is an issue for solving large-scale SND
problems. Due to this difficulty, Chmielewski et al. (2002) have
developed an alternative SND formulation to obtain the minimum
cost sensor network. The authors improved computational effi-
ciency by converting the nonlinear programming problem into
a convex program through the use of linear matrix inequalities.
They applied the SND approach to both steady-state and dynamic
processes subject to single/multiple constraints on precision,
gross-error detectability, resilience, and reliability. Nguyen and
Bagajewicz (2008) have proposed a rigorous equation-based tree
search method for designing nonlinear sensor networks but its
performance is not satisfactory when dealing with large-scale
problems (≥35 measured variables and ≥25 balance equations).
Later on, the same authors have proposed an approximate method
(Nguyen and Bagajewicz, 2013) to solve a large-scale problem
with 35 variables and 28 balance equations where the equation-
based tree search method was used for initialization but still
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