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a  b  s  t  r  a  c  t

To  reliably  solve  PDAE  models  in  established  equation-oriented  modeling  environments  (i) certain  math-
ematical  properties  are  to be fulfilled  and  (ii)  the specified  initial-  and  boundary  conditions  are  to be
consistent.  For  an  assessment  of  both  of these  aspects  an  important  theoretical  framework  is the  concept
of  index.  In this  contribution  we propose  a new  method  for a  systematic  index  reduction  of  quasi-linear
PDAE  systems.  The  general  idea  is to  reveal  quasi-linear  combinations  of  the  differential  quantities  in  the
high-index  model  which  are  invariant  with respect  to a specific  independent  variable.  By  using  these
quasi-linear  combinations  as  templates  for symbolic  manipulations,  additional  algebraic  constraints
become  explicit.  These  explicit  constraints  are then  used  for index  reduction  yielding  low-index  PDAE
models.  The  procedure  is demonstrated  in the  context  of a typical  modeling  work-flow  for  modeling
problems  of a tubular  reactor,  diffusive  charge  transport  in  electrolyte  mixtures  and  incompressible  fluid
flow.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Rigorous models for the description of transport phenomena
in chemical processes frequently result in systems of partial dif-
ferential and algebraic equations (PDAE) (Bird et al., 2002; Curtiss
and Bird, 1999; Martinson and Barton, 2001). For the numerical
treatment of PDAE systems various equation-oriented model-
ing environments (e.g. Process Systems Enterprise, 1997–2009;
Aspentech, 1994–2013) provide suitable methods which are based
on the semi-discretization of the PDAE in the spatial coordinates in
a method of lines (MOL) approach and the numerical integration of
the resulting system of differential-algebraic equations (DAE).

The development of these generic numerical techniques results
in an increasing application of detailed distributed models in the
form of PDAE systems in simulation, model-based design and
control. However, two major challenges can be identified compli-
cating the use of these models: (i) The generic numerical treatment
fails easily, if the PDAE system is not characterized by certain
mathematical properties. It is generally required that the PDAE
system is well-posed in the sense of Hadamard (Vitillaro and
Fiscella, 2013; Hadamard, 1902) demanding a consistent specifica-
tion of initial and boundary conditions. Further, depending on the
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specific numerical methods applied, additional requirements arise
with respect to the structural properties of the PDAE system. (ii)
Especially when large and strongly coupled models are concerned,
important physical principles are not explicitly depicted in the
model structure. Hence, even if a numerical solution is obtained in
a straightforward manner, it is difficult to develop a proper relation
between the model states and the physical phenomena.

These challenges emphasize the importance of a systematic
approach to derive a well-posed distributed simulation model for
a given physical system. A typical work-flow used for such a sys-
tematic model development is shown in Fig. 1 (Marquardt, 1994).
Here, the model developed by established modeling paradigms
in step 1 is subject to a theoretical analysis in step 2. The first
objective of this analysis is the identification of important math-
ematical model properties. The second objective is to analyze the
model with respect to the physical interpretation of the states in
the model. In step 3 the final simulation scenario is specified by
formulating appropriate initial and boundary conditions as well as
model parameters and input functions. The significance of such a
structured modeling approach even for small apparently simple
distributed models is illustrated in the following example.

Example 1 (Isothermal tubular reactor). An isothermal tubular
reactor is considered in which the reactions

A + B
r1�C, (1)

B
r2→D, (2)
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Fig. 1. A general work-flow for the modeling of distributed models.

take place. Assume that the PDAE system

∂ck

∂t
= −∂Jk

∂x
− v

∂ck

∂x
+  sk,1r1 + sk,2r2, k ∈ {A, B, C, D}, (3)

Jk = −Dax ∂ck

∂x
, k ∈ {A, B, C, D}, (4)

0 = K − cA cB

cC
, (5)

0 = r2 − k cB, (6)

can describe the system with adequate accuracy if a consistent set
of initial and boundary conditions is added. Eq. (3) corresponds to
balance equations for the species A, B, C and D in the reaction mix-
ture. The fluxes Jk, accounting for axial dispersion, are introduced by
Eq. (4). The mass-action law (5) is introduced to describe the equi-
librium reaction (1) by means of the equilibrium constant K. The
kinetics of the second reaction (2) are described by the first-order
rate law (6) with the reaction rate coefficient k. The stoichiome-
try of the reactions is captured by the stoichiometric coefficients
s1 = [−1, − 1, 1, 0]T and s2 = [0, − 1, 0, 1]T. Further, ck is the volumet-
ric concentration, v is the velocity of the reaction mixture and Dax is
the axial dispersion coefficient. r1 and r2 are the net reaction rates.

On first inspection, the model (3)–(6) which consists of 10 scalar
equations appears to constitute no particular challenges neither for
the physical interpretation of the model states nor for the numer-
ical treatment in established modeling environments. However, a
first problem might get apparent when addressing the question
which initial and boundary conditions are to specified to com-
plete the problem formulation. The number of differential states
in Eqs. (3) and (4) might lead to the assumption that four ini-
tial conditions, e.g., one for each concentration, and in total eight
boundary conditions can be specified independently. However, as
shown in the following such a specification is inconsistent. With
a certain amount of experience in modeling dynamic systems this
inconsistency might be discovered right away by reasoning that
the equilibrium constraint (5) couples three of the four apparently
independent concentrations. However, even if this issue is identi-
fied right away, no ad hoc solution is available to overcome this
problem.

Problems will certainly arise when the numerical treatment of
the model (3)–(6) is directly addressed with standard methods. The
application of a standard finite-difference scheme to discretize the
spatial coordinates in a method of lines approach, e.g. the central
finite-difference method (Strikwerda, 2004), implicating the spec-
ification of the eight boundary conditions, will yield a singular DAE
model which cannot be solved at all. If a well-posed DAE model can
be obtained, e.g., by applying a modified discretization scheme, it is
very likely that a standard DAE integrator will fail as a consequence

of the inconsistent specification of four initial conditions and the
structural properties of the model (3)–(6).

In recent works (Martinson and Barton, 2000; Neumann and
Pantelides, 2008; Neumann, 2004; Angermann and Rang, 2007)
powerful concepts have been developed to assess important math-
ematical properties of the model and to support the consistent
specification of initial and boundary conditions. An important the-
ory in this context is the concept of the differential or perturbation
index. Different definitions of these indices are reviewed in detail in
Section 2. The essence of the concept of index is to distinguish PDAE
systems that are characterized by a weak coupling of the partial-
differential and the algebraic part from those where this coupling
is more involved. The latter case is commonly denoted as a PDAE
characterized by high index behavior.

In general, high index behavior is associated with several prob-
lems: (i) From physical considerations it would be expected that all
differential quantities with respect to time characterize the storage
of extensive quantities and determine the dynamics of the system.
However, some of these terms are coupled implicitly and the num-
ber of dynamic degrees of freedom is smaller than the apparent
number of states occurring as differentials with respect to time.
Likewise, not all states appearing in the model formulation as dif-
ferential quantities with respect to the spatial coordinates show
the behavior of evolution variables in space (Martinson and Barton,
2001; Johannink et al., 2011). (ii) Correspondingly, the specifica-
tion of a consistent set of initial and boundary conditions is subject
to “hidden” constraints, which are generally not satisfied by an
intuitive approach (Neumann and Pantelides, 2008). (iii) Many of
the established numerical methods for the integration of the DAE
resulting after the discretization of the spatial coordinates require
an index not exceeding one. If applied to high index DAE models,
these methods will exhibit order reduction (Hairer et al., 1993),
completely fail (Gear and Petzold, 1984), or will yield numeri-
cal solutions with an unbounded error (Petzold, 1982). Numerous
methods have been recently developed (e.g. Rang and Angermann,
2008; Lang and Verwer, 2001) that are applicable to high index
DAEs, which however, are not available in the established modeling
environments.

All these critical aspects can be overcome if it is possible to
derive equivalent model formulations which are characterized by
indices not exceeding one. Such procedures are commonly known
as index reduction. However, especially if the considered PDAE
systems are large, this is a non-trivial task: The reduction of the
index by remodeling (e.g., changing the reference frame or drop-
ping a simplifying assumption) involves knowledge in numerical
analysis, profound insight into the underlying physical phenomena
and advanced modeling skills. An algorithmic index reduction usu-
ally increases the size – e.g., by introducing dummy-derivatives
(Mattsson and Soderlind, 1993) – or the complexity – e.g., by
repeated differentiation and substitution (Unger et al., 1995) – of
the model. Thus, the numerical treatment is more involved and –
more importantly – the explicit relation between the model states
and the physical phenomena gets easily lost.

In this contribution, we propose a new method for a system-
atic index reduction of quasi-linear PDAE systems (Zauderer, 2006).
We achieve this by generalizing concepts for index reduction of
differential-algebraic equations developed by Asbjørnsen and Fjeld
(1970), Bachmann et al. (1990) and Moe  (1995). The general idea
of the reduction method is to reveal quasi-linear combinations
of the differential quantities in the high-index model which are
invariant with respect to a specific independent variable. By using
these quasi-linear combinations as templates for symbolic manipu-
lations applied to the differential equations in the model, additional
algebraic constraints become explicit. As these quasi-linear opera-
tions preserve the physical information of the original differential
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