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a  b  s  t  r  a  c  t

Scattering  of  a  monochromatic  train  of  surface  gravity  waves  incident  on  a finite  region  of  arbitrary
three-dimensional  smoothly  varying  bathymetry  is  considered  in  this  paper.  The  full  three-dimensional
linear  water  wave  theory  is  approximated  by  the  depth-averaged  modified  mild-slope  equations  and  a
Greens  function  approach  is  used  to  derive  domain  a  integral  equation  for  the  function  relating  to  the
unknown  surface  over  the  varying  bed.  A simple  but  robust  and  effective  numerical  scheme  is  described
to approximate  solutions  to  the  integral  equation.  The  method  is  applied  to  bathymetries  which  exhibit
focusing  in  the  high-frequency  ray-theory  limit  and  used  to  illustrate  that  focusing  occurs  at  finite  wave-
lengths  where  both  refractive  and  diffractive  effects  are  included.  Specifically,  examples  of  elliptical  and
bi-convex  lens  bathymetries  are  considered.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The idea of focusing of surface waves by underwater lenses was
first proposed by [17]. The basic concept is rather simple: oblique
waves are refracted by changes in depth and so as a wave passes
from a depth h1 to a smaller depth h2, say, the refractive index n
determined by n = k2/k1 > 1 allows oblique waves to ‘straighten out’,
where k1 and k2 are the wavenumbers for travelling waves deter-
mined by the linear dispersion relation K ≡ ω2/g = ki tanh kihi, i = 1,
2 [17] and subsequent later work by these authors used this idea to
consider the focusing of surface waves by lenses which comprised
horizontal underwater plates forming a ‘Fresnel lens’ (the type used
in lighthouses and overhead projectors for example) in plan form,
although a conventional bi-convex lens would work equally well.
Thus incoming waves passing across the lens are transformed into a
circular wave which converges at the focal point of the lens (see, for
example, [26] and references therein). Linear theory and, later, non-
linear theory which accounted for the large amplitudes that arise in
the vicinty of the focal point, were used with success in predicting
large amplification of waves at focal points and these methods com-
pared favourably with experiments in [26]. The theory used in this
early work assumed that the effect of the depth dependence was
simply manifested in a change in wavenumber which resulted in a
two-dimensional wave equation in which the depth dependence
was removed. Later, a numerical method based on fully three-
dimensional linear theory was used by [20] to explore focusing by
Fresnel and bi-convex lens [10] have used a different mechanism
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for focusing surface waves. Using a large periodic array of verti-
cal cylinders whose diameters are much smaller than the incident
wavelength, they appealed to homogenisation theory to argue large
arrays of cylinders alter the wavenumber to create refraction. Using
over 600 cylinders arranged to form a bi-convex lens, they demon-
strated using direct numerical methods that focusing did indeed
occur as homogenisation theory predicted.

Ref. [13] used similar ideas to previous authors, again employ-
ing a submerged horizontal plate in the shape of a lens to refract
waves. In plan form the lens had an elliptical-arc leading edge and
a circular-arc trailing edge. Here, the authors were exploiting ray
theoretical result that incoming parallel rays entering an elliptical
domain with refractive index n = 1/� where � is the ellipticity are
exactly focussed on the far focal point P of the ellipse. By placing the
centre of curvature of the trailing edge circular-arc at P the incom-
ing rays refracted by the leading elliptical edge will be focussed on
P. Experiments performed by [13] showed that this idea worked as
predicted.

In this work we  also take advantage of the elliptical lens focus-
ing used by [13] and consider focusing of waves by an elliptical
sea mount. Specifically, we  examine the refraction of waves in oth-
erwise constant depth h1 incident on an elliptical mound, with a
plateau at depth h2 < h1. According to geometric ray theory high
frequency surface waves will be refracted by an abrupt change in
depth and focus above the far focal point of the elliptical plateau
(see Section 2 for a description of this apparently little known
result). Of course, the change in depth could be effected by hav-
ing waves pass across a submerged elliptical plate. Such a problem
was  considered by [30] and though they do mention focusing of
waves, it is evidently clear that they are unaware of the ray theory
result of exact focusing.
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When waves pass across raised bathymetry, refraction often
results in amplification of waves behind the bathymetry and many
papers have investigated this phenomenon. Three heavily cited
papers in this area are due to [11,6,29] presumably because these
papers include experimental data. In [11,29] amplification of waves
by paraboidal and ellipsoidal shoals on a flat bed are considered [6]
used a rotated ellipsoidal protrusion sitting on a linear sloping bed
profile and produced numerical results based on mild slope equa-
tions, a ray theory approach showing the formation of a caustic
behind the protrusion and experimental results. In none of these
pieces of work consider geometries which predict perfect focusing
under ray theory.

In this paper, we consider smoothly varying bathymetries moti-
vated by the presence of perfect focusing as predicted by ray
theory. A domain integral equation approach is developed to solve
the problem based on the modified mild-slope equations (see,
for example, [7])  which represent the three-dimensional fluid
motion by two-dimensional depth-averaged equations based on
the assumption that the gradient of the bed is small compared
to the non-dimensional wavelength. It is perhaps worthy of note
that the same assumption is used in a short-wavelength geomet-
ric optics approach to predict refraction over varying bathymetry,
where ray paths are orthogonal to the phase lines S(x, y) equals a
constant where S satisfies the eikonal equation S2

x + S2
y = k2(x, y)

and k tanh (kh(x, y)) = ω2/g. See, for example, the description in
[18]. The modified mild-slope approximation can be extended (e.g.,
[24,2])  to larger bed gradients and made increasingly accurate by
the introduction of more vertical modes in the depth averaging
procedure.

There is a difference in how rays bend when confronted with an
abrupt change in depth and a gradual change in depth, though the
final ray directions are the same. Hence the perfect focusing result
described earlier and outlined in Section 2 for the vertically sided
elliptical sea mount is lost once the change is depth is smoothed out.
This is not an issue that we are overly concerned with as ray theory
is introduced mainly for the purpose of motivation. Indeed, as we
are concerned with surface gravity waves, the wavelengths con-
sidered here will be large enough that the defocusing effects of the
gradual change in depth is probably not as important as the finite
wavelength effect. Moreover, the formulation we  propose allows
for diffractive as well as refractive effects. Thus, in order to max-
imise the focusing of wave energy, we require a minimal amount
of diffraction from the submerged bathymetry and this provides a
secondary reason for the use of a smoothly varying bed.

In this problem we therefore consider bathymetries which rises
gradually and smoothly from the open depth h1 onto plateau
of depth h2. We  will consider plateau of both elliptical and bi-
convex lens shapes to demonstrate focusing effects. In Section 3 we
describe the implementation of the mild-slope approximation to
the fully three-dimensional problem and the formulation of domain
integral equations from the reduced two-dimensional mild-slope
equations using a Greens function approach, similar to that used
in [23]. Section 4 outlines a simple but effective numerical dis-
cretisation method used to approximate solutions to the integral
equations based on rectangular and circular based discretisations
of the horizontal projection of the undulating bed. There are some
similarities between our approach in this paper and the dual reci-
procity boundary element method of [31] although our method
appears much more straightforward both to formulate and imple-
ment numerically.

Finally, in Section 5, we produce a selection of graphical demon-
strations of focusing of surface waves, illustrating focusing close
to predictions from ray theory as the wavelength is decreased. In
doing so, we indicate that an elliptical lens provides better focusing
than the bi-convex lenses used previously by authors examin-
ing wave focusing. In addition, we assess the convergence of the

numerical method and compare our results with the experimental
results of [11,29].

2. Motivation: geometric ray theory

2.1. Elliptical lens

The following description can be found in [19]. Consider an ellip-
tical domain with refractive index n > 1 and major axis 2a, minor
axis 2b. Then the eccentricity is defined as � =

√
1 − b2/a2 and the

focal points P and P′ lie at ±a� (see Fig. 1). According to ray theory,
a ray parallel to the major axis is incident on the ellipse, and makes
an angle �i with the normal NN′ to the boundary at O. The ray pro-
ceeds from O at an angle �r with respect to NN′ where Snell’s relates
�i to �r by sin �i/sin �r = n. The ray intercepts the major axis at P and
P′ is the point at which a ray from P is reflected at O by the bound-
ary onto the axis. Then ∠ONP = � − �i and by the sine rule OP = nNP.
Also ∠NOP′ = �r whilst ∠ONP′ = �i and now the sine rule gives us
OP′ = nNP′. Adding these two results together gives POP′ = nPNP′ and
if this is to be independent of the point O, then we  have P and P′ at
the focal points when we get 2a = n2a�. In other words, we require
n = 1/�.

When considering water waves in the short wavelength limit,
a wave approaching the point O at which the elliptical boundary
representing a change in depth is locally straight. By insisting that
there is no change in the component of the wavenumber parallel
to this boundary, we arrive at the relation k1 sin �i = k2 sin �r where
k1 and k2 are wavenumbers of propagating waves in depths h1 and
h2 outside and inside the elliptical boundary. Thus in order to focus
waves we require the relation

n = k2

k1
= 1
�
, (2.1)

to be satisfied. Hence, given the frequency ω, h1 and h2, we may
use (2.1) to determine � for focusing under the ray-theory limit.

2.2. Convex lens

The focal length, f, of a bi-convex lens is determined by the
lensmakers’ equation (see, for example, [9, p. 248, eqn. 6.2]),

1
f

= (n − 1)
(

2
R

− (n − 1)d
nR2

)
, (2.2)

where n is determined by (2.1), d is the thickness of the lens from
front to back and R is the radius of curvature of the lens.

3. Diffraction of waves by arbitrary three-dimensional
bathymetry

3.1. Specification of the problem

The problem is described using Cartesian coordinates with the
x and y axes lying in the mean free surface and z directed vertically
upwards. The bed elevation is then given by z = − h(x, y) where h(x,
y) is a continuous function with continuous derivatives over the
varying part of the bathymetry, an arbitrary finite simply connected
domain (x, y) ∈ D, and is such that h(x, y) = h1, a constant, when (x,
y) /∈ D. Thus we require h = h1 on (x, y) ∈ ∂D, the boundary of D, but
can allow ∇h to be discontinuous across ∂D.

Under the usual assumption of linearised water wave theory,
there exists a velocity potential given by �{(− ig/ω)˚(x, y, z) e−iωt}
where a time-harmonic dependence of angular frequency ω has
been imposed and g is gravitational acceleration. We  seek the time-
independent complex potential ˚(x, y, z) which satisfies

(∇2 + ∂zz)  ̊ = 0, −h(x, y) ≤ z ≤ 0, −∞ < x, y < ∞,  (3.1)
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