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a b s t r a c t

One distinguishing characteristic of a tension leg platform (TLP) is the setdown of the hull when the
platform moves in its compliant modes (surge, sway and yaw). The nonlinear setdown has profound
implications in various aspects of TLP design, but this paper focuses on its impact on the available airgap.
Although there is general consensus that setdown should be included in the airgap assessment, to date
there is no systematic procedure of analysis, and related literature is scarce. This paper aims to develop a
simplemethod for incorporating setdown in the extreme response prediction of the airgap. The proposed
method requires only the covariances of the platform motions, and these are available from a frequency
domain analysis. From a case study, the crossing rates calculated by the proposed method is found to
be in good agreement with Monte Carlo simulation, with only a slight disparity at high threshold levels.
This work has also afforded physical insight; for example, it is discovered that the wave-frequency (WF)
motions aremore critical to the extreme airgap compared to the low-frequency (LF) motions, because the
surface elevation is correlated with the WF motions, but not with the LF motions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The tension leg platform (TLP) is a type of offshore floating
structure that is permanently attached to the seabed by pre-
tensioned vertical tendons (or tethers). The tendons are kept
continually taut by the excess buoyancy of the platform. In this
way, the heave, roll and pitch motions are effectively constrained,
making the TLP the most stable of all floating systems. To a lesser
extent, the tendons also provide restoring forces in the lateral
modes (surge, sway and yaw) through the inverted pendulum
action. The lateral modes are compliant, with natural periods that
aremuch longer than the periods of oceanwaves (typically 5–25 s).
As a consequence of the lownatural frequencies, the TLP undergoes
slow drift motions when exposed to irregular waves, due to the
presence of second-order low-frequency wave forces.
Dynamic analysis is fundamental to the design of floating

structures, including TLPs. In the early stages of a TLP design, the
platform is often modeled as a rigid body, and the effects of the
tendons are incorporated as massless springs. This approach is
known as an uncoupled analysis. The prediction of the extreme
motions of a floating structure subjected to random waves has
been topical for many years. Central to this problem is the
combination of the wave-frequency (WF) and low-frequency

∗ Tel.: +65 67905265; fax: +65 67910676.
E-mail address: ymlow@ntu.edu.sg.

(LF) motions, and the distinctly non-Gaussian behavior of the
LF response. Techniques for extreme response analysis include
Monte Carlo simulations [1], detailed statistical analysis [2,3], and
approximate formulae [4].
One distinguishing characteristic of a TLP is the vertical submer-

gence of the hull when the platform translates laterally. This phe-
nomenon, known as setdown, originates from the pendulum-like
motion. The setdown effect has profound implications in various
facets of TLP design. First of all, it produces nonlinear changes to the
tendon tension, and this in turn is chiefly responsible for the non-
linearity of the platform restoring forces [5]. As the draft increase
affects the wave loading, DNV-OS-C105 [6] recommends that the
WF analysis should be based on at least two offset positions.
Setdown also affects the riser performance, especially the stroke
capacity of the tensioner system [7,8]. Last, and perhaps most im-
portantly, setdown reduces the available airgap. Given that the
statistical analysis of platform motions has been studied exten-
sively, it is somewhat surprising that a probabilistic treatment of
the setdown has not received much attention. Setdown is inher-
ently nonlinear, being approximately of second order with respect
to the platform excursion, and it is governed by a combination of
surge, sway and yaw motions [9,10]. These complications suggest
that the study of setdown response statistics should be a challeng-
ing endeavor. However, an isolated study of the extreme setdown
response, although fascinating, is not necessarily of practical rele-
vance, unless an associated effect is considered in conjunction. The
airgap is a critical parameter for column-based platforms. Insuf-
ficient airgap may lead to wave impacts under the deck, whereas
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an excessive deck elevation is detrimental to various functional re-
quirements. Accordingly, the influence of the setdown on the air-
gap response is selected as the subject of this work.
Inasmuch as there is general consensus that setdown should

be included in TLP airgap design [6,7,10], to date a systematic
procedure of analysis has not been established, and moreover
literature on the subject is scarce. Banon et al. [11] analyzed the
crossing rates of the airgap by considering the setdown induced
by only the LF motion in a chosen direction; the WF motions are
disregarded. Interestingly, in a subsequent work, Banon et al. [12]
proposed that theminimum airgap should be determined from the
maximum setdown and the extreme wave crest, both associated
with a design storm. This approach is obviously conservative,
as the TLP excursion and the wave elevation are not perfectly
correlated, and hence the peaks of the setdown andwave elevation
are unlikely to coincide.
The aim of this paper is to develop a consistent framework

for incorporating setdown in the extreme airgap assessment. The
method is targeted for repetitive use during the iterative design
process, and thus it should be simple and efficient. The setdown
is defined as a function of the surge, sway and yaw offsets to
better reflect reality, instead of considering the offset in just one
direction as is customary in prior investigations. Moreover, the
phase relationships between the motions and the wave elevation
should be properly modeled. Both the WF and LF motions will be
included in the study in order to understand their impacts. Finally,
the suitability of themethodwill be assessed by usingMonte Carlo
simulation as a reference.
In fact, the complexities of airgap prediction extend far beyond

the boundaries of setdown. Although theWF vesselmotions can be
computedwith reasonable accuracy using linear diffraction theory,
the same cannot be said of the wave elevation, which is known to
be appreciably nonlinear and non-Gaussian. Another complicating
feature is the wave run-up on columns. Several studies [13,14]
have attempted to incorporate second-order diffraction into the
modeling of the local surface profile, withmodest success. Because
of the uncertainties relating to the airgap analysis of a TLP, DNV-
OS-C105 [6] requires that the results must be verified by model
tests. In this regard, there is a multitude of experimental studies
concerning the airgap of TLPs [14–16].
Evidently, it is impossible to address the entire range of

practical issues within the span of a single paper. For this reason,
the present work focuses on the interaction between the setdown
and the wave profile on a fundamental level. To this end, the
surface elevation will be modeled as a linear Gaussian process as
an initial step towards developing a better understanding of the
interaction. Nonetheless, the imperativeness of nonlinearities is
acknowledged, and a pragmatic but approximate procedure will
be proposed for incorporating the results from existing nonlinear
wave models into the present analysis.

2. Dynamic response of a TLP

Frequency domain analysis can be used to evaluate the mean-
squared response statistics very rapidly. This section summarizes
the basic steps in the frequency domain analysis of a TLP, following
which the response variances will feature in the airgap analysis in
the next section.
Consistent to the subject matter of setdown, it is sufficient

to delimit the exposition to the in-plane motions. Let the
displacement vector be

X(t) =

[X1(t)
X2(t)
X3(t)

]
, (1)

representing surge, sway and yaw sequentially. The equation of
motion is then stated as

MẌ+ BẊ+ KX = F(t), (2)

where M, B and K are 3 × 3 matrices corresponding to mass,
damping and stiffness, respectively, F(t) is the external forcing
vector, and Ẋ and Ẍ are the velocity and acceleration vectors. It
is implied that the equation of motion is linear (or linearized).
In reality, the damping is nonlinear owing to the drag force, and
the restoring force is also nonlinear, as mentioned in Section 1. To
facilitate a frequency domain analysis, the equation ofmotionmust
be linearized. Linearization of the drag force is well documented.
The statistical linearization of the platform restoring force in six
degrees of freedom (DOFs) has been recently investigated by
Low [3].
The external force vector may be decomposed as

F(t) = F̄+ F(1)(t)+ F(2)(t), (3)

where F̄ denotes the mean force, F(1) the first-order WF force, and
F(2) the second-order LF force. It should be mentioned that the
second-ordermeandrift is included in F̄. The high-frequency forces
affect primarily the ‘‘stiff’’ modes and are irrelevant to the present
discussion. The WF and LF forces can be solved via diffraction
analyses in the frequency domain, and they are conventionally
defined as

F(1)(ω) = T(1)(ω)η(ω) (4)

F(2)(ωm, ωn) = T(2)(ωm, ωn)η(ωm)η(ωn), (5)

where T(1) and T(2) are the vectors of the first- and second-order
transfer functions with reference to the incident wave profile, η.
The Fourier transform of Eq. (2) is expressed as(
−ω2M+ iωB+ K

)
X(ω) = F(ω). (6)

Hence, the WF response can be written in the form

X(1)(ω) = R(1)(ω)η(ω), (7)

where

R(1)(ω) = H(ω)T(1)(ω) (8)

is the vector of response amplitude operators (RAOs), with

H(ω) =
(
−ω2M+ iωB+ K

)−1
. (9)

From the theory of random vibrations [17], the spectral density
matrix of the WF response is given as

S(1)X (ω) = R(1)(ω)Sηη(ω)R(1)(ω)∗T , (10)

where ∗ signifies the complex conjugate. Likewise, the LF spectral
response matrix is expressed as

S(2)X (ω) = H(ω)S(2)F (ω)H(ω)
∗T , (11)

where S(2)F is the spectral matrix of the LF forces, given as [18]

S(2)F (ω) = 8
∫
∞

0
T(2)(µ, ω + µ)

[
T(2)(µ, ω + µ)

]∗T
× Sηη(µ)Sηη(ω + µ)dµ. (12)

It can be noted that the off-diagonal terms of S(2)F are complex and
are imperative for upholding the phase relationships between the
forces in differing DOFs.
Subsequently, from the response spectral matrix, the covari-

ances of the displacements and velocities can be evaluated as
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