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a b s t r a c t

The paper provides a bivariate distribution of wave power and wave height, as well as a bivariate
distribution of wave power and wave period; both bivariate distributions are for individual waves within
a sea state. This is relevant for e.g. making assessments of wave power devices and their potential for
converting energy from waves. The results can be applied to compare systematically the wave power
potential for individual waves in a given sea state at different locations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Ocean wave energy appears to be promising as a source of
alternative energy. The design of appropriate devices to convert
energy from waves is a challenge for the engineering community.
The response of a wave energy device is generally frequency
dependent, i.e. the resonance frequency and the frequency range
which will give a significant response, will depend on the design
of the device. A device will be exposed to a wide range of sea
states characterized by the significant wave height Hs and a
characteristic wave period, i.e. the spectral peak period Tp or the
mean zero-crossing wave period Tz . Moreover, within a sea state,
the individual randomwaves are characterized by the wave height
H and the wave period T .
A requirement for the optimum design of a wave power device

is that it can be controlled to produce maximum wave power at
a low cost in a sea state. At the same time the control should
protect the device when exposed to extreme waves. This requires
that its response properties can be changed tomatch the change in
wave conditions. Typically this means that its resonance period is
changed to match the characteristic wave period of the sea state.
For a given sea state it should also be possible to control the device
to resonate with the most energetic waves, or with waves having
periods above a threshold value; see e.g. [1,2]. A recent review of
wave energy extraction is given in [3].
Thus, a knowledge of the statistical properties of the waves is

crucial for designing a proper wave power device, i.e. both for the
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sea state and the single random waves within a sea state. It is also
of interest to know e.g. the joint statistical properties of the wave
power in a sea statewith significantwave height or a characteristic
wave period, or the joint statistics of thewave power for individual
waves with the individual wave height or the individual wave
period. Some examples of previous work on wave power statistics
for sea states are [4–7], while Smith et al. [8] and Venugopal and
Smith [1] studied the wave power statistics for individual waves.
The purpose of the present paper is to provide bivariate

distributions of wave power with wave height and wave power
with wave period for individual waves within a sea state, and to
discuss statistical aspects of wave power for individual waves. The
results can be applied to compare systematically the wave power
potential in different sea states at different locations based on short
term statistical description of the waves.

2. Background

The wave power is defined as the transport of wave energy per
unit crest length of the progressive wave front, which for waves in
deep water is given by (see e.g. [9])

J =
γ g2

32π
H2T . (1)

Here γ is the fluid density, g is the acceleration of gravity, H is the
wave height, and T is the wave period. In a sea state of random
waves Eq. (1) can be taken to represent the wave power associated
with a single random wave with wave height H and wave period
T . Different models of the joint probability density function (pdf )
of H and T are given in the literature. Examples are: [10–13].
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Comparisons of distributions with observed wave data have been
presented by e.g. [14,15].
In the present paper the [13] (hereafter referred to as MK84)

distribution is chosen to serve the purpose of demonstrating how a
joint pdf ofH and T can be used to provide the statistical properties
of J . MK84 was derived by fitting a parametric model to data
obtained frommeasurements at sea on the Norwegian continental
shelf including altogether 6353 individual zero-downcross waves.
These data were taken from a larger data base sampled with three
Waverider buoys located at three different deep water locations.
The MK84 model is given as

p(h, t) = p(t|h)p(h) (2)

where the marginal pdf of h is given by the 2-parameter Weibull
pdf

p (h) =
2.39h1.39

1.052.39
exp

[
−

(
h
1.05

)2.39]
; h ≥ 0 (3)

and the conditional pdf of t given h is given by the 3-parameter
Weibull pdf

p(t|h) =
β

ρ

(
t − α
ρ

)β−1
exp

[
−

(
t − α
ρ

)β]
; t ≥ α (4)

with the parameters

α = 0.12
√
h (5)

ρ =

{
0.78h+ 0.26 for h ≤ 0.9
0.962 for h > 0.9 (6)

β = 2 arctg [2 (h− 1.2)]+ 5. (7)

Here h = H/Hrms and t = T/Trms are the normalized variables
made dimensionless by using the root-mean-square (rms) values.
For these data the rms values are related to the significant
wave height Hs and the mean zero-crossing wave period Tz by,
respectively,

Hrms = 0.714Hs (8)

and

Trms = 1.2416Tz . (9)

Here Eqs. (8) and (9) are obtained as the best fit to data by linear
regression analysis. Since Hrms and Trms are constants for each sea
state, p(h, t) in Eqs. (2)–(7) is a conditional pdf given a sea state,
i.e. given Hrms and Trms (or equivalently Hs and Tz).
By introducing the non-dimensional wave power j = J/Jchar ,

Eq. (1) can be re-arranged to

j = h2t (10)

where

Jchar =
γ g2

32π
H2rmsTrms (11)

is a characteristic wave power for the sea state.

3. Statistical properties of wave power

Statistical properties of the non-dimensional wave power j
(from which the statistical properties of the wave power J can be
obtained) can be derived by using the joint pdf of h and t , e.g. giving
the joint pdf of j and h. First, the joint pdf of j and h is obtained from
Eq. (10) by a change of variables from (h, t) to (h, j), which takes
the form

p (h, j) = p (j|h) p (h) . (12)
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Fig. 1. Isocontours of p (h, j). The levels of the eight outer contours from the
outermost contour are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

It should be noted that this change of variables only affects p (j|h)
since t = j/h2, yielding a 3-parameter Weibull pdf of j given h in
the form

p (j|h) =
β

ρh2

(
j− αh2

ρh2

)β−1
exp

[
−

(
j− αh2

ρh2

)β]
; j ≥ αh2.

(13)

The joint pdf of t and j is obtained from Eq. (10) by a change of
variables from (h, t) to (t, j), which takes the form (by using the
Jacobian |∂ j/∂h| = 2ht)

p (j, t) =
p (h, t)
2ht

=
p (t|h) p (h)
2ht

= p
(
t|h =

√
j
√
t

)
p (j; t) (14)

where

p (j; t) =
p (h)
2ht
= p

(
h =
√
j
√
t

)/
2
√
j
√
t. (15)

It should be noted that the notation in Eq. (15) is used to make it
clear that p(j; t) depends explicitly on t . By substitution in Eq. (3), it
follows that Eq. (15) can be re-arranged to the 2-parameterWeibull
pdf

p (j; t) =
s
r

(
j
r

)s−1
exp

[
−

(
j
r

)s]
; j ≥ 0 (16)

with the parameters

r = 1.052t (17)
s = 2.39/2. (18)

Moreover, p
(
t|h =

√
j/
√
t
)
is given by Eqs. (4)–(7) to by substitut-

ing for h, i.e. h =
√
j/
√
t .

Fig. 1 shows the isocontours of p (h, j), and the quadratic
increase of j with h is clearly seen. The peak value of the pdf is
pmax = 6.2 and is located at h = 0.41 and j = 0.1, i.e. at a rather
low value of h. This reflects the location of the peak of the MK84
pdf of h and t (see MK84, Fig. 17).
Fig. 2 shows the cumulative distribution function (cdf ) of j, and

is based on integration of the joint pdf in Fig. 1. It appears that there
is a factor of approximately 3.2 between the 50% (j = 0.76) and the
90% (j = 2.4) fractiles. In this case the relatively narrow shape of
the joint pdf which can be observed in Fig. 1 is reflected also here.
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