
Applied Ocean Research 30 (2008) 256–263

Contents lists available at ScienceDirect

Applied Ocean Research

journal homepage: www.elsevier.com/locate/apor

System identification for nonlinear maneuvering of large tankers using artificial
neural network
G. Rajesh, S.K. Bhattacharyya ∗
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai-600036, India

a r t i c l e i n f o

Article history:
Received 8 July 2008
Received in revised form
20 October 2008
Accepted 23 October 2008
Available online 1 January 2009

Keywords:
Hydrodynamic derivatives
Maneuvering
Neural network
Neurons
Nonlinear
Ship
Simulation
System identification
Tanker

a b s t r a c t

This paper deals with the application of nonparametric system identification to a nonlinear maneuvering
model for large tankers using artificial neural networkmethod. The three coupledmaneuvering equations
in this model for large tankers contain linear and nonlinear terms and instead of attempting to determine
the parameters (i.e. hydrodynamic derivatives) associated with nonlinear terms, all nonlinear terms are
clubbed together to form one unknown time function per equation which are sought to be represented
by the neural network coefficients. The time series used in training the network are obtained from
simulated data of zigzag maneuvers and the proposed method has been applied to these data. The neural
network scheme adopted in this work has one middle or hidden layer of neurons and it employs the
Levenberg–Marquardt algorithm. Using the best choices for the number of hidden layer neurons, length
of training data, convergence tolerance etc., the performance of the proposed neural network model has
been investigated and conclusions drawn.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

System identification can be defined as a systematic approach
to find amodel of an unknown system from the given input–output
data. For system identification to be successful, three items should
be properly selected or designed; mathematical model of the
system, input–output data and parameter estimation scheme.
The area of ship maneuvering has seen extensive application
of a variety of system identification methods. Some of the
established system identification methods in this area are indirect
model reference adaptive systems [1], continuous least square
estimation [2], recursive least square estimation [3,4], recursive
maximum likelihood estimation [5], recursive prediction error
technique [6], extended Kalman filter approach [7]. In recent
times, various approaches and techniques of system identification
that have been used in the area of ship hydrodynamics are
Markov process theories, statistical linearization techniques [8]
and reversemultiple input-single outputmethods [9,10]. Recently,
the neural network based identification has drawn attention in
ship maneuvering [11–13]. The mathematical model of the neural
network is so called because it mimics the learning process of
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the human brain and does not use a physical model. Because of
this, it should be more robust than the classical physical model
based identification techniques, especially when the physical
models are complex and semi-empirical in nature. Neural network
based system identification models, developed in this paper, are
shown to provide an attractive alternative to the identification
methods relying upon physics based mathematical models of
ship maneuvering. The input–output data required for this neural
network based identification method can be directly obtained
either from free running model tests or full-scale maneuvering
trials so that the method is accurate enough for all practical
simulation work.
Whereas neural network based identification in ship maneu-

vering has been treated in the literature in a preliminary way [11–
13], all the studies consider the classical Abkowitz model [7] of
nonlinear maneuvering and its variants. This class of maneuvering
models hold good for cargo ships but are quite inadequate for large
tankers. The well proven mathematical models of maneuvering of
large tankers [14–16] are quite different from that of cargo ships [7,
15] in several respects. The principal among them are (i) strong
coupling between propulsion hydrodynamics involving propeller
thrust, rpm and thrust deduction factors etc. with maneuvering
hydrodynamics, (ii) coupling between rudder hydrodynamics and
propulsion hydrodynamics such that propeller rpmaffects the flow
speed past the rudder and this in turn modifies the hydrodynamic
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forces and moments acting on the tanker that appear in its ma-
neuvering equations, (iii) shallow water effect on maneuvering.
To date, neural network based identification has not been studied
in the context of themaneuvering of large tankers. The present pa-
per makes an attempt to do so for the first time.

2. Nonlinear equations of motion

The nondimensional surge, sway and yaw equations of large
tankers [15,16] are considered in this paper. These are:

u̇− vr = gX (1)
v̇ + ur = gY (2)

(Lkz)2 ṙ + LxGur = gLN (3)

where

gX = Xu̇u̇+ L−1Xuuu2 + Xvrvr + L−1Xvvv2 + L−1Xc|c|δδ|c|cδ2

+ L−1Xc|c|βδc|c|βδ + Xu̇ζ u̇ζ + L−1Xuuζu2ζ + Xvrζvrζ
+ L−1Xvvζζv2ζ 2 + gT (1− t̂) (4)

gY = Yv̇ v̇ + L−1Yuvuv + L−1Yv|v|v|v| + L−1Y|c|cδ|c|cδ + Yurur
+ L−1Y|c|c|β|β|δ||c|c|β|β |δ| + Yurζurζ + L−1Yuvζuvζ
+ L−1Y|v|vζ |v|vζ
+ L−1Y|c|c|β|β|δ|ζ |c|c|β|β |δ| ζ + Yv̇ ζ v̇ζ + YTgT (5)

gLN = L2(Nṙ ṙ + Nṙζ ṙζ )+ Nuvuv + LN|v|r |v|r + N|c|cδ|c|cδ
+ LNurur + N|c|c|β|β|δ||c|c |β|β |δ|
+ LNurζurζ + Nuvζuvζ
+ LN|v|rζ |v|rζ + N|c|c|β|β|δ|ζ |c|c|β|β|δ|ζ + LNTgT (6)

gT = L−1Tuuu2 + Tunun+ LT|n|n|n|n (7)

kz = L−1
√
Iz/m, c2 = cunun+ cnnn2,

ζ =
d
h− d

, β = v/u. (8)

In the above, u and v are the velocities along X (towards
forward) and Y axis (towards starboard) respectively, r is the yaw
rate (= ψ̇ , where ψ is the yaw angle in the horizontal plane), an
overdot denotes time (t) derivative, L is length of the ship, d is
the draft of the ship, kz is the nondimensional radius of gyration
of the ship in yaw, m is the mass of the ship, Iz is its mass
moment of inertia about Z axis (vertically downward with axis
origin at free surface), xG is the nondimensional X coordinate of
ship’s centre of gravity (Y coordinate of ship’s centre of gravity
yG is taken as zero), g is acceleration due to gravity, X, Y and N
are the nondimensional surge force, sway force and yaw moment
respectively, δ is the rudder angle, c is the flow velocity past
rudder, ζ is the water depth parameter, cun and cnn are constants,
T is the propeller thrust, h is the water depth, t̂ is the thrust
deduction factor and n is the rpm of the propeller shaft. All other
quantities are constant hydrodynamic derivatives. All quantities
in the above equations are nondimensional and may be related to
their dimensional counterparts (denoted by an overbar) using BIS
system given by [15] according to

(u, v) = (ū, v̄)/
√
Lg

r = r̄/
√
g/L

(u̇, v̇) = ( ¯̇u, ¯̇v)/g

ṙ = ¯̇r/(g/L)
(xG, yG) = (x̄G, ȳG)/L

ω = ω̄/
√
g/L

m = m̄/(ρ∇); Iz = Īz/(ρ∇L2).

(9)

In the above equationsω is the nondimensional circular frequency,
ρ is the sea water density and ∇ is the volumetric displacement
of the hull. The system of three equations, as represented by (1),
contains 10 hydrodynamic derivatives in the X-equation (surge)
and 12 in both Y -(sway) and N-(yaw) equations, a total of 34
hydrodynamic derivatives.
Now, substituting (4) in (1), we get

(1− Xu̇ − Xu̇ζ ζ )u̇ = g1(u, v, r, T , ζ , c, δ). (10)

Similarly, substituting (5) in (2) and (6) in (3), we get

(1− Yv̇ − Yv̇ζ ζ )v̇ = g2(u, v, r, T , ζ , c, δ) (11)

(k2z − Nṙ − Nṙζ ζ )ṙ = g3(u, v, r, T , ζ , c, δ) (12)

where

g1 = L−1(Xuu + Xuuζ ζ )u2 + (1+ Xvr + Xvrζ ζ )vr
+ L−1(Xvv + Xvvζζ ζ 2)v2 + L−1(X|c|cδδ|c|cδ2)
+ L−1(X|c|cβδ|c|cβδ)+ gT (1− t̂) (13)

g2 = L−1Yuvuv + L−1Y|v|v|v|v + L−1Y|c|cδ|c|cδ + (Yur − 1)ur
+ L−1Y|c|c|β|β|δ||c|c |β|β |δ| + Yurζurζ + L−1Yuvζuvζ
+ L−1Y|v|vζ |v|vζ + L−1Y|c|c|β|β|δ|ζ |c|c|β|β |δ| ζ + YTgT (14)

g3 = L−2{Nuvuv + LN|v|r |v|r + N|c|cδ|c|cδ + L(Nur − xG)ur
+N|c|c|β|β|δ||c|c |β|β |δ| + LNurζurζ + Nuvζuvζ
+ LN|v|rζ |v|rζ + N|c|c|β|β|δ|ζ |c|c|β|β|δ|ζ + LNTgT }. (15)

3. Model for neural network
From the maneuvering equations given by (10)–(15), it may

be observed that the inertia terms contain linear hydrodynamic
derivatives (one in each equation) and their corrections (one
in each equation) and the functions g1, g2 and g3 contain
only nonlinear hydrodynamic derivatives. System identification
requires knowledge of at least some of these derivatives and in the
present model it is obviously acceleration derivatives (first order)
which are relatively easy to estimate. Therefore in this work we
have chosen a model for system identification where the three
linear hydrodynamic derivatives and their water depth dependent
corrections alone are assumed known as given in (10)–(12). Thus,
this model requires knowledge of three acceleration derivatives
Xu̇, Yv̇ andNṙ and their corrections due to water depth, i.e. Xu̇ζ , Yv̇ζ
and Nṙζ , a total of six constants.

4. Neural network formulation
The unknown nonlinear functions g1, g2 and g3 are simply the

sumof all nonlinear terms in (13)–(15) and hence to be determined
by a neural network model. A three layer neural network model is
used in the presentwork to represent the unknown functions g1, g2
and g3 as shown in Fig. 1. The input layer has time functions surge
velocity u(t), sway velocity v(t), yaw velocity r(t), rudder angle
δ(t) and a bias with value of unity, i.e. a total of five neurons. The
middle layer has m neurons where the value of m has to be found
by numerical trials. The output layer consists of the functions g1, g2
and g3. Denoting

x1 = 1, x2 = u(t), x3 = v(t), x4 = r(t) and
x5 = δ(t) (16)

we relate the input and middle layer neurons as

zi =
5∑
j=1

wijxj (i = 1, . . . ,m− 1) (17)

and then transform them using a squashing function as

σi =

{
(1+ e−zi)−1, i = 1, . . . ,m− 1
1, i = m. (18)
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