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a  b  s  t  r  a  c  t

The  multiperiod  blending  problem  involves  binary  variables  and bilinear  terms,  yielding  a nonconvex
MINLP.  In  this  work  we  present  two  major  contributions  for the  global  solution  of  the problem.  The  first
one  is an  alternative  formulation  of  the  problem.  This  formulation  makes  use  of  redundant  constraints
that  improve  the MILP  relaxation  of the  MINLP.  The  second  contribution  is an  algorithm  that  decomposes
the  MINLP  model  into  two levels.  The  first  level,  or master  problem,  is  an MILP  relaxation  of  the  original
MINLP.  The  second  level,  or subproblem,  is  a smaller  MINLP  in  which  some  of  the  binary  variables  of
the  original  problem  are  fixed.  The  results  show  that  the  new  formulation  can  be  solved  faster  than
alternative  models,  and  that  the  decomposition  method  can  solve  the  problems  faster  than  state  of the
art general  purpose  solvers.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Many processes in the petrochemical industry involve the blending of intermediate and final products. Large cost savings can be achieved
by efficient blending schemes that satisfy the technical and regulatory specifications of products. For example, the economic and operability
benefits from optimal crude-oil blend scheduling can reach multimillion dollars per year (Kelly and Mann, 2003).

One of the first mathematical programming models to represent the scheduling of blending operations is the pooling problem (Haverly,
1978). This problem seeks to find the optimal blend of materials available from a set of supply streams, while satisfying the demand of
a set of products. The model enforces that the end products satisfy a specified minimum and maximum level for each specification. The
objective is to minimize the total cost (or maximize the profit) of the operation. Several optimization models for the pooling problem
have been reported in the literature. The p-formulation (Haverly, 1978), based on total flows and component compositions, is commonly
used in chemical process industries. The q-formulation (Ben-Tal et al., 1994) uses variables based on the fraction that each input stream
contributes to the total input to each pool, and does not explicitly use the pool specifications as variables. The pq-formulation (Tawarmalani
and Sahinidis, 2002) is obtained by including valid redundant inequalities in the q-formulation. Tawarmalani and Sahinidis (2002) prove
that the redundant constraints help to obtain a stronger polyhedral relaxation of the pooling problem. Lastly, Audet et al. (2004) propose a
hybrid formulation by combining the p and q models to avoid additional bilinear terms that arise when generalized pooling problems are
modeled using the q-formulation.

The multiperiod blending problem can be regarded as an extension of the pooling problem. In addition to the pooling problem
restrictions, it considers inventory and time variations of supply and demand. The multiperiod blending problem can be formulated as a
mixed-integer nonlinear programming (MINLP) problem (Kolodziej et al., 2013). Binary variables are required to model the movements of
materials in and out of the tanks and to account for fixed costs. Even in the absence of binary variables, bilinear terms (which are necessary
to model the mixing of various streams) make the problem nonconvex. Due to this highly combinatorial and nonconvex nature, the blend
scheduling problem is very challenging. General purpose global optimization solvers fail to solve even small instances.
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Fig. 1. Sketch of the multiperiod blending problem.

To the best of our knowledge, Foulds et al. (1992) were the first to propose a global optimization algorithm to solve a single-component
pooling problem. They use McCormick envelopes (McCormick, 1976) to relax the bilinear terms. Androulakis et al. (1995) propose a
convex quadratic NLP relaxation, known as ˛BB underestimator. However, due to its generality, the NLP relaxation is weaker than its LP
counterpart. Ben-Tal et al. (1994) and Adhya et al. (1999) present different Lagrangean relaxation approaches for developing lower bounds
for the pooling problem. These bounds are tighter than standard LP relaxations used in global optimization algorithms.

The use of constraints that strengthen the linear relaxation of MINLP problems has been widely used in the literature. In particular,
several authors use constraints that are redundant for the MINLP but cut off regions of the McCormick relaxation in MINLPs with bilinear
terms. In the context of processing network problems, Quesada and Grossmann (1995) apply the reformulation-linearization technique
(RLT) (Sherali and Adams, 1998), together with McCormick envelopes, to improve the relaxation of a bilinear program by creating redundant
constraints. These authors combine concentration and flow based models in order to obtain a relaxed LP formulation that provides a valid
and strong lower bound to the global optimum. Similar results are obtained by Tawarmalani and Sahinidis (2002) for the multicomponent
pooling problem. The idea of using redundant constraints to strengthen the relaxation of the original problem is also used by Karuppiah
et al. (2008) in the context of water networks. These constraints correspond to total mass balance of contaminants and serve as deep cuts
in the McCormick relaxation.

Piecewise MILP relaxations are an alternative relaxation of MINLPs that provide stronger bounds than traditional MILP relaxations. The
first references to the use of piecewise MILP relaxation are by Bergamini et al. (2005) and Karuppiah et al. (2008). Following this idea,
Wicaksono and Karimi (2008) propose several novel formulations for piecewise MILP under and overestimators for bilinear programs.
Gounaris et al. (2009) present a comprehensive computational comparison study of a collection of fifteen piecewise linear relaxations over
a collection of benchmark pooling problems. Misener et al. (2011), building on the ideas from Vielma and Nemhauser (2011), introduce a
formulation for the piecewise linear relaxation of bilinear functions with a logarithmic number of binary variables. Another alternative to
piecewise relaxations are discretization techniques, such as multiparametric disaggregation (Kolodziej et al., 2013; Teles et al., 2013). The
number of additional binary variables increases linearly with each increment in the precision of the discretization.

As an alternative to branch-and-bound solution procedures, Kolodziej et al. (2013) propose a heuristic as well as a rigorous two-
stage MILP-NLP and MILP-MILP global optimization algorithms. Approximate and relaxed MILPs are obtained through the multiparametric
disaggregation technique. Kesavan and Barton (2000) propose two approaches to generalize the outer approximation algorithm to separable
nonconvex MINLP. Similarly, Bergamini et al. (2005), based on the work from Türkay and Grossmann (1996), present a deterministic
algorithm based on logic-based outer approximation that can guarantee global optimality in the solution of the optimal synthesis of a
process network problem.

Although the multiperiod blending problem arises in several applications, crude-oil blending is of great importance due to the potential
increase in profit derived from optimal operation. In fact, crude-oil costs account for about 80% of the refinery turnover (Li et al., 2012). As
a scheduling extension of the blending problem, crude-oil scheduling involves the unloading of crude marine vessels into storage tanks,
followed by the transfer of crude from storage to charging tanks and finally, to the crude-oil distillation units (CDUs) (Lee et al., 1996; Shah,
1996). Lately, crude-oil scheduling models incorporate more quantity, quality, and logistics decisions related to real-life refinery operations,
such as minimum run-length requirements, one-flow out of blender or sequence-dependent switchovers (Shah and Ierapetritou, 2011).

Several authors have proposed different algorithms relying on mixed-integer linear formulations to avoid solving the full nonconvex
MINLP. These models can be seen as relaxations of the original MINLP. Méndez et al. (2006) present a novel MILP-based method where
a very complex MINLP formulation is replaced by a sequential MILP approximation that can deal with non-linear gasoline properties
and variable recipes for different product grades. Similarly, a two-stage MILP-NLP solution procedure is employed by Jia and Ierapetritou
(2003) and Mouret et al. (2009), featuring in the first stage a relaxed MILP model without the bilinear blending constraints followed by the
solution of the original MINLP after fixing all binary variables. The same two-stage algorithm is studied by Castro and Grossmann (2012)
together with several global optimization methods. However, instead of dropping the bilinear constraints in the two-stage algorithm, they
use multiparametric disaggregation to relax the bilinear terms. Moro and Pinto (2004) and Karuppiah et al. (2008) tackle the problem with
the augmented penalty version and a specialized version of the outer-approximation method, respectively. Reddy et al. (2004) propose an
MILP relaxation combined with a rolling-horizon algorithm to eliminate the composition discrepancy. Finally, Li et al. (2012) use a spatial
branch-and-bound global optimization algorithm, that at each node uses the MILP-NLP two-stage strategy previously mentioned, to solve
the MINLP problems.
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