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Techniques to generate damped waves in linear shallow water equations are developed. Delta-shaped source
functions are derived for four different cases with the source function and damping coefficient either in the con-
tinuity ormomentum equation. Source terms are also found by relating the source functionmethod to the source
term additionmethod. For the transport of the source term in dampedwaves, we define complex valued source-
term velocity which is different from the real valued energy velocity. We verify the present wave generation
techniques with the source-term velocity by simulating damped waves on a horizontal bottom both in the
one- and two-dimensional domains, and also damped waves shoaling and refracting on a plane slope in the
two-dimensional domain.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Coastal engineers use a finite computational domain to understand
wave transformations. Some waves may propagate from the interior
to the outside boundary and should not be returned into the domain.
Thus, the engineers need to specify open boundary condition that the
outgoing waves propagate freely without any numerical problem. One
such technique is to generate waves internally inside the domain at a
wave generation region and put a sponge layer at the outside boundary.
There are two methods of internal generation. One is to add a source
term such as water surface elevation or particle velocity at the wave
source region at each time step during the computation procedure.
Another is to put a source function in the continuity or momentum
equation of the governing equations. Kim et al. (2007) found that the
source term additionmethod is equivalent to the source functionmeth-
od. Larsen andDancy (1983)first used the source term additionmethod
for Peregrine's (1967) Boussinesq equations. They found that the source
term propagates with the phase velocity explaining that water mass
propagates with the phase velocity. Later, Lee and Suh (1998) found
that the source term propagates with the energy velocity instead of
the phase velocity. The energy velocity is a group velocity that depends
on the wave equations. For example, for mild-slope equations of
Copeland (1985) and Radder and Dingemans (1985), the energy veloc-
ity is the phase velocity and the group velocity, respectively. Using the
energy velocity for the transport of the source term, Lee et al. (2001)
succeeded in generating waves internally for extended Boussinesq
equations of Nwogu (1993). They explained that, for Peregrine's

Boussinesq equations, the energy velocity is close to the phase velocity
in shallowwater and thus Larsen andDancy could generatewaves using
the phase velocity. The concept of energy propagation in the internal
generation of waves was theoretically explained by Schäffer and
Sørensen (2006) who investigated wave generation mechanism in a
grid system of time and space and also by Kim et al. (2007) who used
the Green's second identity. Wei et al. (1999) first used the source func-
tion method by putting the source functions in either the continuity or
momentum equation of the Boussinesq equations. They used the
Gaussian-shaped source function in a source region instead of the previ-
ously used delta-shaped source function which was used in a source
line. Also, Kim et al. (2006) developed source functions in a source re-
gion for several types of the mild-slope equations. To generate multi-
directional waves, at least two wave generation regions, i.e., one in the
main direction and the other in the orthogonal direction, are needed.
Then, for obliquely incident waves, the wave diffraction problem
would occur near the points where the two regions cross over because
target wave energy is over- or under-specified at these points. To over-
come such a diffraction problem, Lee and Yoon (2007) suggested using
an arc-shaped wave generation line connecting the two orthogonal
lines. Further, Kim and Lee (2013) developed an arc-shaped wave gen-
eration band yielding errors less than the arc-shaped line. The afore-
mentioned wave equations for internal generation were of the
hyperbolic type. The internal wave generation was also made in the el-
liptic mild-slope equation of Berkhoff (1972) by Bellotti et al. (2003).
The method of internal wave generation was also used in the three-
dimensional Navier–Stokes equations by several researchers (Choi and
Yoon, 2009; Ha et al., 2013; Kawasaki, 1999; Lin and Liu, 1999). Another
method of specifying open boundary condition is putting a relaxation
zone where target waves are generated properly and waves reflected
from the interior are absorbed smoothly (Madsen et al., 2003; Mayer
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et al., 1998). The method was found to be successful in generating
obliquely incident waves with the two-dimensional Boussinesq equa-
tions (Jamois et al., 2006) and also waves with the three-dimensional
Navier–Stokes equations (Jacobsen et al., 2012).

To date, coastal engineers have developed techniques of generating
waves internally for un-damped waves. In actual sea, wave energy
may dissipate due to turbulence in the surf zone or bottom friction in
shallow water, etc. One way to simulate energy dissipation is to put
the damping coefficient in the momentum or continuity equation, and
themagnitude of damping coefficient is determined by fitting themag-
nitude to the value determined by a physical formula (Dalrymple et al.,
1984; Reid and Kajiura, 1957). In this study, we develop a technique of
internal generation of dampedwaves in linear shallowwater equations.
The source function for wave generation is considered to be delta
shaped. In Section 2, we use the geometric optics approach to get a dis-
persion relation, a relation among the damping coefficient and thewave
number, and the energy velocity. In Section 3, we develop delta-shaped
source functions for four different cases with the source function and
damping coefficient in the continuity and momentum equations. We
also get source terms using the fractional step splitting method and de-
fine a so-called source-term velocity which is different from the energy
velocity for the transport of the source term for damped waves. In
Section 4,we verify the presentwave generation techniques by simulat-
ing damped waves on a horizontal bottom in both the one- and two-
dimensional domains. We also conduct damped waves shoaling and
refracting on a plane slope in the two-dimensional domain. In
Section 5, we summarize the present study.

2. Geometric optics method

The linear shallow water equations in the one-dimensional domain
can be described as

∂η
∂t

þ ∂ huð Þ
∂x

¼ 0 ð1Þ

∂u
∂t

þ g
∂η
∂x

¼ 0 ð2Þ

where η is thewater surface elevation, u is the horizontal particle veloc-
ity, h is the still water depth, and g is the gravitational acceleration. The
source function may be included in the continuity or momentum equa-
tion. Also, the damping term may be included in the continuity or mo-
mentum equation. Thus, there may be four different cases with source
function and damping term in the equations, that is, case (1-1): source
and damping in the continuity equation, case (1-2): source in the conti-
nuity equation and damping in the momentum equation, case (2-1):
source in themomentumequation and damping in the continuity equa-
tion, and case (2-2): source and damping in the momentum equation.
In this section we use the geometric optics approach to get the disper-
sion relation, the relation among the damping coefficient and the
wave number, and the energy velocity in the linear shallowwater equa-
tions with a damping coefficient.

The continuity equationwith the damping termDcη as in cases (1-1)
and (2-1) can be described as

∂η
∂t

þ ∂ huð Þ
∂x

þ Dcη ¼ 0: ð3Þ

And, the momentum equation with the damping term Dmu as in cases
(1-2) and (2-2) can be described as

∂u
∂t

þ g
∂η
∂x

þ Dmu ¼ 0: ð4Þ

In Eqs. (3) and (4), Dc and Dm are the damping coefficients in the conti-
nuity andmomentum equation, respectively. First, we consider the case

with the damping coefficient in the momentum equation such as cases
(1-2) and (2-2). For the constant damping coefficient, differentiating
Eq. (1) in time and using Eqs. (1) and (4) yield the following equation

∂2η
∂t2

−g
∂
∂x

h
∂η
∂x

� �
þ Dm

∂η
∂t

¼ 0: ð5Þ

The water surface elevation can be expressed as

η ¼ a0ei kx−ωtð Þ ¼ aei krx−ωtð Þ ð6Þ

where a ¼ a0e−kix,ω is the angular frequency, k(=kr + i ki) is the com-
plexwave number, kr is the real part related towave phase, and ki is the
imaginary part related to the decay of wave amplitude. Substituting
Eq. (6) into Eq. (5) gives, in real part, the dispersion relation given by

Cp ¼ ω
kr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1−

ki
kr

� �2
" #vuut ð7Þ

where Cp is the phase velocity. And, in the imaginary part, we get the re-
lation between the damping coefficientDm and the complexwave num-
ber k given by

Dm ¼ 2
gh
ω

krki ¼ 2kiCe ð8Þ

and also the energy transport equation given by

∂
∂x

gh
ω

kra20

� �
¼ ∂

∂x
Cea20
� � ¼ 0: ð9Þ

In Eqs. (8) and (9), Ce is the energy velocity given by

Ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gh

1− ki
kr

� �2

vuuut ¼ Cp

1− ki
kr

� �2 : ð10Þ

From Eqs. (7) and (8), we can get the wave number ratio given by

ki
kr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dm

ω

� �2q
−1

Dm

ω

: ð11Þ

Substitution of Eq. (11) into Eq. (7) yields the solution for kr and using it
in Eq. (11) yields the solution for ki.

We also use the geometric optics approach for the damping coeffi-
cient in the continuity equation as in cases (1-1) and (2-1), and get
the same relations given by Eqs. (7)–(10).

3. Techniques for the internal generation of damped waves

The derivation procedure to get the source function is similar among
the four different cases with the source function and damping coeffi-
cient. In this study, we show a detailed derivation procedure for cases
(1-2) and (2-2) and show the final form of the developed source func-
tion for cases (1-1) and (2-1). We also find source terms that are used
in the source term addition method (Kim et al., 2007).

3.1. Development of source functions

For case (1-2) in the horizontally one-dimensional domain, the con-
tinuity equation with the source function Sc is given by

∂η
∂t

þ ∂
∂x

huð Þ ¼ Sc ð12Þ
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