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a  b  s  t  r  a  c  t

Scheduling  of power  and  real-time  optimization  for  three  industrial  cogeneration  plants  at  one  of  Dow’s
Louisiana  site  is presented  in this  paper.  A  first  principle  mathematical  model  that  includes  mass  and
energy  balances  for  gas  turbines,  heat  recovery  units,  steam  turbines,  pressure  relief valves  and  steam
headers  is  used  to  formulate  an  optimization  problem  to recommend  the  best  strategy  to trade  power.
The  model  has detailed  operational  information  that  includes  equipment  status  and  control  curves  for
different  operating  scenarios.  The  model  can  also  accurately  predict  the  effect  of  ambient  temperature,
thereby  resulting  in  an  optimal  day-ahead  schedule.  Adjustment  of power  schedule  is done  in  the  real-
time  market  30 min  prior  to the hour  and  implementation  of  the  dispatched  power  schedule  is  done
using  a  model  predictive  controller.
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1. Introduction

Efficient participation in day-ahead market for a combined heat
and power (CHP) cogeneration plant requires effective decision
support tools based on accurate predictions of steam and elec-
tricity production, and fuel consumption for various operating
scenarios. A good survey on short term cogeneration planning
that includes day-ahead market has been published (Salgado and
Pedrero, 2008). Day-ahead short term planning typically con-
sists of hourly planning intervals that require good predictions
of fuel consumption and power generation by the cogeneration
plant. The literature on cogeneration planning focuses on solution
of the economic scheduling problem using mixed-integer linear
programming (MILP) models (Marshman et al., 2010; Havel and
Simovic, 2013; Mitra et al., 2013; Alipour et al., 2014). The non-
linear process behavior is approximated using linearized models
for turbines and boilers with constant efficiency (Marshman et al.,
2010; Havel and Simovic, 2013; Mitra et al., 2013). MILP models
are used to avoid numerical difficulties associated with fundamen-
tal models that are non-linear. Detailed fundamental, non-linear
models of cogeneration plants have been used for design and oper-
ational optimization (Bruno et al., 1998; Varbanov et al., 2004;
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Koch et al., 2007; Godoy et al., 2011). Comparison of results from a
case study for a cogeneration plant shows that a simplified MILP
model with fixed efficiencies can lead to infeasibilities or sub-
optimal solutions compared to detailed fundamental non-linear
models (Bruno et al., 1998). Fundamental models have also been
used for startup optimization of cogeneration processes (Tica et al.,
2012; Negrete et al., 2013). Fast nonlinear model predictive con-
trol has been developed to reduce on-line computational load for
startup optimization (Negrete et al., 2013). A two-tier formula-
tion for real-time economic optimization based on steady-state
models and model predictive control using dynamic models has
been developed for industrial processes (Emoto et al., 1998; Rotava
and Zanin, 2005; Mercangoz and Doyle, 2008). A non-hierarchal
economic model predictive controller that dynamically optimizes
transient and steady-state performance simultaneously has been
proposed for processes where the steady-state operation is not
optimal or transition cost is significant (Angeli et al., 2012; Amrit
et al., 2013). A comprehensive survey on industrial model predic-
tive technology that includes history of technology development
and features of different vendor offerings has been provided (Qin
and Badgwell, 2003).

The power scheduling calculations in this paper use a detailed
steady-state, non-linear model that is also used for real-time
optimization of the industrial process. Implementation of the
optimized power schedule is done using a linear model predic-
tive controller that uses empirical dynamic models. Fundamental
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nonlinear models with operational control strategy details will give
more accurate predictions of the process and better participation
in the power scheduling market compared to MILP models. The
scheduling application of industrial cogeneration plants presented
in this paper uses a first principle, steady-state, non-linear model
with the following details:

• Model tuned continually with plant data and also used for online
optimization

• Accounts for equipment that gets switched on or off
• Includes process control strategy that may  use different equip-

ment in an hierarchical manner
• Control curves and design performance curves for equipment

The scheduling application also has following capabilities

• User can input future ambient temperature
• User can switch parts of plant on or off to account for equipment

contingency

The above modeling details enable the scheduler model predictions
to have a close match with plant data for fuel consumption at differ-
ent operating scenarios. The prediction error in fuel consumption
from plant data is less than two percent over the entire operat-
ing range thereby allowing for efficient participation in the power
scheduling market. Simpler linear models are not sufficiently accu-
rate for scheduling power because they do not allow for control
strategy, equipment control and performance curves, and inherent
process nonlinearities.

The following section gives a description of the steady-state,
non-linear process model for the cogeneration plants that includes
gas turbines and steam turbines along with the associated control
strategies. Section 3 presents model validation for the steady-
state model including details on steady-state detection algorithm
and parameter fitting procedure. Section 4 goes over the power
scheduling calculations and the associated multiple optimization
cases. These cases are done for both the day-ahead market and
also the real-time adjustment of the power offer. Section 5 details
the implementation of the scheduler that is performed using a
real-time optimizer and an associated linear model predictive con-
troller. Section 6 goes over results for model validation, power
scheduling calculations and scheduler implementation. Stability of
model parameters over the entire operating range is shown for
model validation. The power schedule offer curve variation with
ambient temperature and equipment contingency is illustrated.
The effectiveness of optimized power schedule implementation
using a linear model predictive controller is also shown for plant
datasets.

2. Process description and model

The chemical site has three combined heat and power (CHP)
plants (cogeneration plants) with seven gas turbines and five steam
turbines capable of meeting the steam and electrical power needs
of other chemical production facilities. Surplus power is produced
that allows Dow to participate in the day-ahead Mid-Continent
Independent System Operator (MISO) power market. Power is
scheduled in the MISO day-ahead market close to production cost
and adjustments to the power offer are made in real-time market
30 min  prior to each hour. A steady-state model of the process that
includes component material balances, energy balances and ther-
modynamics is developed in Aspen Plus Optimizer, AspenTech’s
equation oriented environment. A steady-state model is appro-
priate for scheduling power in cogeneration plants because the

Table 1
Unit operations and equations.

Unit operation Equations

Compressor Isentropic compression with performance curves
Combustor Stoichiometric reactions
Turbine Isentropic expansion with performance curves
Duct burners Stoichiometric reactions
Heat exchangers Material and enthalpy balances with heat transfer

calculations
Boilers Material and enthalpy balances with heat transfer

calculations
Pumps Pressure rise with design performance curves
Mixers Material and enthalpy balances
Flash drum Vapor–liquid separation at fixed temperature and pressure
Valves Material and enthalpy balances with pressure drop

calculations
Splitters Material and enthalpy balances
Tier rate models Split range control strategy equations
Calculators Custom calculations
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Fig. 1. Gas turbine.

process dynamics for exported power are fast with a settling time
of 3 min  as compared to the scheduling interval of each hour.

The process model consists of equations describing gas turbines,
steam turbines, heat exchangers, steam headers, fuel headers, con-
densate system, pressures relief valves, pumps and compressors.
The process model in the equation oriented environment is also
augmented with additional equations for process control strategy
and equipment control specifications. The typical unit operations
used as building blocks in the steady-state process model along
with the associated equations are listed in Table 1. The overall
steady-state process model consists of approximately 18,000 equa-
tions and can be expressed as

f (x, u, d, b) = 0, y = h(x, u, d, b) (1)

in which y are outputs, u are inputs, x are states, d are measured dis-
turbances, and b are model parameters. The limits for the variables
can be expressed as

umin ≤ u ≤ umax, xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (2)

The process modeling details for gas turbine, steam turbine and
header pressure control are listed below.

2.1. Gas turbine

The gas turbine model consists of compressor, combustor, tur-
bine, duct burners and heat recovery section as shown in Fig. 1.
Design curves are used to characterize the compressor and tur-
bine efficiencies instead of using a fixed efficiency over the entire
operating range. Ambient air is raised to a higher pressure and
temperature without any heat of reaction in the compressor. Fuel
is injected in the combustor that provides mixing, burning and
dilution. The mixed hot gas enters the turbine section, where it
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