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In this paper we consider the modelling of nonlinear wave transformation by means of weakly nonlinear
Boussinesqmodels. For a given couple linear dispersion relation-linear shoaling parameter, we showhow to derive
two systems of nonlinear PDEs differing in the form of the linear dispersive operators. In particular, within the
same asymptotic accuracy, these operators can either be formulated by means of derivatives of the velocity, or
in terms of derivatives of the flux. In the first casewe speak of amplitude-velocity form of themodel, in the second
of amplitude-flux form. We show examples of these couples for several linear relations, including a new
amplitude-flux variant of the model of Nwogu (J. Waterway, Port, Coast. Ocean Eng. 119, 1993). We then
show, both analytically and by numerical nonlinear shoaling tests, that while for small amplitude waves the
accuracy of the dispersion and shoaling relations is fundamental, when approaching breaking conditions it is
only the amplitude-velocity or amplitude-flux form of the equations which determines the behaviour of the
model, and in particular the shape and the height of the waves. In this regime we thus find only two types of
behaviours, whatever the form of the linear dispersion relation and shoaling coefficient. This knowledge has
tremendous importance when considering the use of these models in conjunction with some wave breaking
detection and dissipation mechanism.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The modelling of wave transformation in the near shore region
requires a physically correct description of both dispersive and nonlinear
effects. The use of asymptotic depth averaged Boussinesq Type (BT)
models for this task is quite common (Brocchini, 2013). These models,
however, have to be used with much care. Quite often, enhanced
weakly-nonlinear variants of these models, such as those proposed in
(Abbott et al., 1978; Beji and Nadaoka, 1996; Madsen and Sørensen,
1992; Nwogu, 1993; Peregrine, 1967), are used outside of their range
of applicability, e.g. when reaching breaking conditions. Fully non-
linear models are known to do a much better job in this regime (Grilli
et al., 1994). However, also these models fail to actually include energy
dissipation effects associated with wave breaking. To take into account
these effects, either ad-hoc viscosity terms are included (Elnaggar and
Watanabe, 2000; Kennedy et al., 2000; Nwogu, 1996), eventually based
on PDEs for the vorticity transport equation (Briganti et al., 2004), or a
coupling with the Shallow Water equations is introduced (Brocchini,
2013; Kazolea et al., 2014; Tissier et al., 2012; Tonelli and Petti, 2011).
Despite the fact that they are theoretically well adapted only for small
amplitude waves, weakly nonlinear BT models with wave breaking

corrections provide in practice accurate results, even though clearly out-
side of their domain of validity (Brocchini, 2013; Kazolea et al., 2014;
Roeber and Cheung, 2012).

The key to this success is actually the use of a properly designed and
calibrated wave breaking model, which includes a breaking detection
criterion and a dissipation mechanism. In the literature many wave
breaking criteria exist, often classified in phase-averaged, using wave
characteristics representative of one full phase of the wave (as the
average wave height, length or period), and phase resolving ones,
using informations computed from local characteristics of the wave.
We refer the interested reader to Okamoto et al. (Okamoto and Basco,
2006) for a general review, and to (Brocchini, 2013; Kazolea et al.,
2014; Roeber and Cheung, 2012; Tonelli and Petti, 2011) and references
therein for further details on particular breaking criteria. Here we limit
ourselves to observe that, in general, these criteria are based on physical
information related to the shape and speed of the waves (height, slope,
curvature, etc.) close to the breaking point. The challenge for a correct
capturing of these features is, thus, the understanding of the genuinely
nonlinear physics underlying breaking, as well as the understanding of
the non-linear shoaling properties of the dispersive wave propagation
model. A correct modelling of genuinely nonlinear effects is thus a re-
search topic of high priority (Brocchini, 2013). In particular, the wave
shoaling when approaching the nonlinear regime has a fundamental
importance in this respect. Note that while the linear properties of the
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models can be thoroughly studied analytically (Dingemans, 1997), in
the nonlinear case some properties, such as e.g. the shoaling behaviour,
must be studied numerically.

Dispersive wave propagation can be modelled by means of several
types of weakly nonlinear BT models. These all provide different ap-
proximations of the nonlinear wave (or Euler) equations. The design
properties of these models are often the linear dispersion relation and
the shoaling coefficient. These are optimised to be as close as possible
to those of the linear wave theory for the range of wave numbers rele-
vant for the applications sought. Given a linear dispersion relation and
linear shoaling coefficient, it is known that two nonlinear sets of Partial
Differential Equations (PDEs) can be formulated, both degenerating to
the same linearized system. Denoting by a the wave amplitude, h the
meanwater level, andλ thewavelength, these twomodels are alternate
formswithin the same asymptotics in terms of the nonlinearity ε= a/h
and dispersion σ = h/λ parameters. The main difference lies in the
nature of the higher order derivatives, which can either be applied to
the velocity u, or to the flux q= du, d denoting the depth. These formu-
lations are referred here to as amplitude-velocity, and amplitude-volume
flux forms. Examples of such couples for some dispersion relations are
given in (Dingemans, 1997).

To gain a better understanding in the properties of weakly nonlinear
BT models, this paper presents a thorough analytical and numerical
characterization of their nonlinear behaviour. For a given couple linear
dispersion relation-linear shoaling parameter, we start by recalling
how to construct, within the same asymptotic accuracy, two nonlinear
sets of PDEs: the first one in amplitude-velocity form, the other one
in amplitude-volume flux form. The theory is applied to four linear rela-
tions corresponding to themodels of Peregrine (Peregrine, 1967) and to
the enhanced models of Beji and Nadaoka (Beji and Nadaoka, 1996),
Madsen and Sørensen (Madsen and Sørensen, 1992) and Nwogu
(Nwogu, 1993). For each of thesemodels, we give the corresponding al-
ternate formulations.We obtain that the amplitude-volumeflux formof
the Peregrine system leads to themodel used byAbbott in (Abbott et al.,
1978), the amplitude-volume flux form of the Beji and Nadaoka model
is equivalent to amodified formof theMadsen and Sørensenmodel, and
vice versa that the amplitude-velocity form of the latter can be obtained
by a small modification of the model of (Beji and Nadaoka, 1996).
Finally, for the equations of Nwogu, we derive a new BT system which
is the corresponding amplitude-volume flux form. We then study
these models, and the main result of the paper can be summarized as
follows:while in the linearized case four types of behaviours are observed,
corresponding to the given four couples of linear dispersion relation-
shoaling coefficient, when approaching the nonlinear regime, only two
type of behaviours are observed, which are independent on the linear
dispersion relations and shoaling parameters, and depend only on whether
the model is formulated in amplitude-velocity or amplitude-volume flux
form. This observation is confirmed by both theoretical arguments and
numerical results.

The present study gives important insight in the behaviour of BT
models, especially in view of the applications of breaking detection
criteria. In particular, our result shows that these criteria must take
into account not only the type of breaking expected in the flow but

also the underlying form of the propagation model. For simplicity, we
only consider here models well adapted to the near shore range
(reduced wave numers kh ≤ π), however very similar arguments can
be used to study deep water variants (Madsen and Schaffer, 1998).

The structure of the paper is the following. In Section §2. we present
the derivation of weakly nonlinear Boussinesq equations, and we discuss
the construction of models in amplitude-velocity, and amplitude-flux
forms for different particular cases. Section §3 presents the theoretical
analysis of the systems of PDEs obtained, and in particular the analysis
of the propagation of higher order harmonics, which gives an indication
of the non-linear behaviour of the models. Finally, numerical tests in
both the linear and nonlinear regime are discussed in Section §4. The
paper is endedby conclusive remarks andby an overviewof futureworks.

2. Weakly nonlinear Boussinesq type models

We review a certain number of weakly nonlinear Boussinesq type
(BT) models. We recall that these models are obtained as depth aver-
aged asymptotic approximations of the incompressible Euler equations.
In particular, if a denotes a reference wave amplitude, h0 a reference

Fig. 1. Sketch of the free surface flow problem, main parameter description.
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Fig. 2. Phase velocity ratio for all themodels: P stands for Peregrine (Eq. (3)), A for Abbott
(Eq. (8)), BN and BNA for Beji–Nadaoka and Beji–Nadaoka–Abbott (Eqs. (11)) and (12)
resp.), MS and MSP for Madsen–Sørensen and Madsen–Sørensen–Peregrine (Eqs. (14)
and (17) resp.), and N and NA for Nwogu and Nwogu-Abbott (Eqs. (22) and (26) resp).

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

1.25

1.5

kd

a 2/
a 2S

to
ke

s

Stokes
P
A
BN = MSP
MS = BNA
N
NA

Fig. 3. Ratio of the second harmonic a2/a2Stokes for the models considered. Continuous line:
amplitude-velocity models. Dashed lines: amplitude-flux models. Refer to Fig. 2 for the
legend.
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