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Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modellingmethods, we de-
rive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around
the still water level. The polynomial expansion in wave height is mixed with pseudo-differential operators that
preserve the exact dispersion relation. The consistent approximate equations have inherited the Hamiltonian
structure and give exact conservation of the approximate energy. In order to deal with breaking waves, we ex-
tend the eddy-viscositymodel of Kennedy et al. (2000) to be applicable for fully dispersive equations. As breaking
triggermechanismwe use a kinematic criterion based on the quotient of horizontal fluid velocity at the crest and
the crest speed. The performance is illustrated by comparing simulations with experimental data for an irregular
breakingwavewith a peakperiod of 12 s above deepwater and for a bathymetry induced periodicwave plunging
breaker over a trapezoidal bar. The comparisons show that the higher order models perform quite well; the
extension with the breaking wave mechanism improves the simulations significantly.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate simulations of waves in deep water and in the coastal zone
are important for various offshore activities and environmental issues.
Efficiency and safety in design, installation and operations are most im-
portant for offshore wind farms, oil and gas platforms, ship and harbour
design and for sustainable coastal management. Accurate wave models
are needed to predict and describe waves also in extreme cases. This
paper aims to contribute in presenting good and efficient models that
are capable to describe rough waves and breaking waves.

The paper starts with the derivation of higher order Boussinesq-type
models with exact dispersion by using the basic variational formulation
of incompressible, irrotational surface waves with free surface under
the influence of gravity. Nonlinear gravity waves have been the object
study in many theoretical, numerical and experimental investigations.
Boussinesq (1872) simplified the Euler equations for irrotational,
incompressible fluid by approximating the Laplace equation for the in-
terior fluid potential to obtain equations in horizontal quantities only
by approximating the depth dependence. This leads to bi-directional
and dispersive dynamic equations for the surface elevation and a fluid
velocity. Korteweg and de Vries (1895) (KdV) derived special solutions,
the soliton and periodic equivalents, of a simplified Boussinesq equation
for which the velocity variable is related to the surface elevation in such

a way that the two dynamic equations lead to one unidirectional dy-
namic equation.

Zakharov (1968) formulated the basic Hamiltonian formulation of
water waves on the surface of an infinitely deep fluid. The Hamiltonian
in this formulation contains the kinetic energy, which is the Dirichlet
integral of the fluid potential, that has to be expressed for given surface
elevation in the other canonical variable which is the fluid potential at
the surface. Craig and Sulem (1993) approximated Zakharov's formula-
tion up to fifth order accuracy by a Taylor expansion of the Dirichlet-to-
Neumann operator that maps the fluid potential at the fluid surface to
the normal derivative of fluid potential at the surface. Recent KdV-
type of models for waves above finite or infinite depth, called AB equa-
tions, have been developed by van Groesen and Andonowati (2007).
Using a second order Taylor expansion for the surface potential and
for the vertical velocity around the still water level, leads to an approx-
imation with exact dispersion in first and second order terms.

In this paper we present a simple derivation of higher order Hamil-
tonian equations for bi-directional waves. Just as in van Groesen and
Andonowati (2007) an expansion around the still water level will be
used to approximate the exact kinetic energy to any desired order in
the wave amplitude, keeping the exact dispersion properties. To that
end, the Taylor approximation of the normal velocity in the still water
potential is expressed in the desired potential at the free surface after
inverting the expansion of the free surface potential in the still water
potential. The dynamic equations are then obtained by taking variations
of the Hamiltonian which is explicitly expressed in the canonical vari-
ables. By invoking a uni-directionalisation assumption, higher order
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KdV equations can be obtained as extensions of the AB equations;
therefore the higher order Hamiltonian equations will be called AB
Hamiltonian Systems (ABHS).

Following the basic ideas used for other type of Boussinesq equa-
tions, we will extend the ABHS equations with a mechanism to deal
with breakingwaves. To that end, a triggermechanism for the initiation
of the wave breaking, and an energy dissipation mechanism have to be
chosen.

Three dominant types of dissipation models in the current literature
are the surface roller model (Schäffer et al. (1993); Madsen et al.
(1997)), the vorticity model (Svendsen et al. (1996); Veeramony and
Svendsen (2000)) and the eddy viscosity model (Heitner and Housner
(1970); Zelt (1991); Kennedy et al. (2000)). For the initiation of the
breaking, different methods have been described: the trigger mecha-
nism based on the slope angle variation (Schäffer et al. (1993)), based
on the normal speed of the free surface elevation exceeding some
threshold value (Kennedy et al. (2000)), Relative Trough Froude
Number (RTFN) (Okamoto and Basco (2006)) and recently the Breaking
Celerity Index method that couples the criterion proposed by Kennedy
and the RTFN (D'Alessandro and Tomasicchio (2008)).

In this paper, we will implement for the ABHS models an exten-
sion of the eddy viscosity breaking model of Kennedy et al. (2000).
The extension makes it possible to deal with fully dispersive waves
and will be applicable not only in shallow water but also in deep
water. Besides that, we will investigate two variants for the viscosity
coefficient. In one variant the decay is determined by the normal
velocity as in Kennedy et al. (2000), while in a second variant the
decay is determined by the tangential velocity; both variants will
lead to almost similar results.

As trigger mechanism, we use the kinematic breaking criterion that
the wave will breakwhen the horizontal particle speed exceeds (a frac-
tion of) the crest speed. The crest speedwill be determined by an explic-
it expression of the local wavenumber as suggested by Stansell and
MacFarlane (2002) by applying the spatial Hilbert transform; this
mechanism will shown to be quite robust and applicable for all water
depths.

The organisation of the paper is as follows. In Section 2 we present
the variational description of surface waves and the consistent approx-
imation of the ABHS equations up to fourth order. Section 3 deals with
the extension to wave breaking with the eddy viscosity model and the
kinematic breaking criterion. The numerical implementation with a
pseudo-spectral code is briefly described in Section 4. In Section 5 we
show results of simulations and compare these with accurate data.
Experiments of deep water, irregular, breaking waves are available
from the hydrodynamic laboratoryMARIN (Maritime Research Institute
Netherlands). Bathymetry induced breaking is compared with experi-
ments of periodic long waves plunging breaking over a bar by Beji and
Battjes (1993). Conclusions and remarks will finish the paper.

2. Variational wave description

In Section 2.1 we start with the description of the Hamiltonian
formulation for surface water waves. In the expression of the kinetic
energy functional appears the vertical velocity implicitly defined as
operator linear in the surface potential and nonlinear in the elevation.
In Section 2.2we approximate the kinetic energy by using Taylor expan-
sion with the potential at the still water level as intermediate variable.
The approximation of the kinetic energy in second to fifth order leads
to approximations of the dynamic equations with first to fourth order
accuracy. We will verify that the Hamiltonian with the approximate
kinetic energy leads to the same results as an approximation of the
exact equations; as one consequence of this Hamiltonian consistent
modelling, exact conservation of the approximate energy is guaranteed.
In Section 2.3 we describe a Hybrid Spatial Spectralmethod to dealwith
varying bottom in the application in Section 5.2

2.1. Hamiltonian formulation

Zakharov (1968), and later independently Broer (1974), showed
that waves in one horizontal direction x on the surface of an incom-
pressible, inviscid fluid under the influence of gravity can be described
by a set of Hamilton equations for the surface elevation η(x, t) and the
surface fluid potential ϕ(x, t) as canonical variables. Miles (1977)
showed that this could have been derived from a variational pressure
principle as formulated by Luke (1967) that could easily be rewritten
as an action functional

∫ ∫ ϕ∂tη dx−H ϕ; ηð Þ
h i

dt ð1Þ

for which the critical points, just as in Classical Mechanics, satisfy the
Hamilton equations:

∂tη ¼ δϕH ϕ;ηð Þ
∂tϕ ¼ −δηH ϕ;ηð Þ:

Here we use the notation δϕ and δη to denote the variational derivative
with respect to ϕ and η respectively.

The Hamiltonian is the total energy, the sum of potential and kinetic
energy:

H ϕ;ηð Þ ¼ 1
2
∫ gη2 dxþK ϕ;ηð Þ

where the kinetic energy is formally given for finite and infinite depth,
by

K η;ϕð Þ ¼ 1
2
∫ ∫ j∇Φj2 dx dz:

HereΦ is the fluid potential that satisfies the Laplace equation in the in-
terior fluid domain (representing the incompressibility condition for ir-
rotational fluid motion), the surface condition Φ = ϕ at z = η and the
impermeable bottom boundary condition. By applying Green's
theorem, the kinetic energy can be expressed as

K η;ϕð Þ ¼ 1
2
∫ ϕ∂nΦ dx: ð2Þ

WithW the vertical velocityW=Φz(x, η), here ∂nΦ=W− ηxΦx at z= η
is the normal velocity at the surface, the Dirichlet-to-Neumann operator.
Since ϕx = Φx(x, η) + ηxW, we get ∂nΦ = W(1 + ηx2) −ηxϕx and the
kinetic energy can be rewritten as

K ϕ;ηð Þ ¼ 1
2
∫ϕ W 1þ η2x

� �
−ηxϕx

n o
dx: ð3Þ

It holds thatδϕK ¼ ∂nΦ, as shown by Zakharov (1968), andwe get for
the first Hamilton equation ∂tη = δϕH(ϕ, η) = W(1 + ηx2) − ϕxηx.
This is the kinematic surface condition, the continuity equation.

For variations of the Hamiltonian with respect to η, in the variation
of kinetic energy it is important to realise that ϕ actually depends on η
since ϕ is the potential at the surface. Hence, for given variation δη, to
keep ϕ fixed at the varied surface, we also get a contribution from the
induced change δϕ= Wδη. To compensate this, in taking variations of
η at fixed ϕ we have

δηK; δη
D E

¼ K ηþ δη;ϕ−Wδη
� �

¼ δηK; δη
D E

− δϕK;Wδη
D E

where we denote by δη the total variation with respect to η, allowing ϕ
to change. Since

δηK ¼ 1
2
j∇Φj2z¼η ¼ 1

2
ϕx−ηxW
� �2 þW2
h i
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