Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Optimal design of integrated agricultural water networks

Eusiel Rubio-Castro^{a,*}, José María Ponce-Ortega^b, Maritza Elizabeth Cervantes-Gaxiola^a, Oscar Martín Hernández-Calderón^a, Jesús Raúl Ortiz-del-Castillo^a, Jorge Milán-Carrillo^a, José Francisco Hernández-Martínez^a, José Antonio Meza-Contreras^a

^a Chemical and Biological Sciences Department, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80000, Mexico
^b Chemical Engineering Department, Universidad Michocana de San Nicolás de Hidalgo, Morelia, Michoacán 58060, Mexico

ARTICLE INFO

Article history: Received 16 November 2014 Received in revised form 7 August 2015 Accepted 11 August 2015 Available online 20 August 2015

Keywords: Water integration Fertilizer reuse Agricultural water Multi-period optimization

ABSTRACT

This paper presents a mathematical programming model for the optimal design of water networks in the agriculture. The proposed model is based on a new superstructure that includes all configurations in terms of use, reuse and regeneration of water in a field constituted by a number of croplands. The model also includes the allocation of pipelines, pumps and storage tanks in different irrigation periods. The objective function consists in maximizing the annual profit that is formed by the economic incomes owing to the crop sell minus the costs for fresh water, fertilizer, storage tanks, treatment units, piping and pumping. The proposed multi-period optimization problem is formulated as a mixed integer non-linear programming formulation, which was applied to a case study to demonstrate the economic, environmental and social benefits that can be obtained.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Agriculture is the activity with the highest water demand in the world. Besides it contributes to the water pollution due to the use of nutrients (fertilizers) and pesticides that are discharged as wastewater. Agriculture helps to the ecosystems biodiversity, provides elements to the flue gas capture, contributes to enhance the landscape, is an important factor to combat the world hunger and represents great economic profits (OECD, 2013). In this sense, agriculture is vital to the human being, therefore several technologies and methodologies have been developed to improve seeds, fertilizers, pesticides, process equipment, storage and preservation feeds as well as irrigation systems. The irrigation technologies have been focused on the reduction of fresh water and the application of this resource for increasing the yield of crops. Here, water reduction can be analyzed from two perspectives: (a) Inside the process: It consists in finding the best irrigation technique as well as the reuse of wastewater, (b) Outside the process: It is related to the reuse of wastewater coming from industrial activities. While a combination of the above scenarios produces a simultaneous scheme to consider the reuse of treated water, the irrigation technique as well as the water reuse. Nevertheless, the simultaneous scheme could be a good strategy to optimize the water use in agriculture, the reported works have

http://dx.doi.org/10.1016/j.compchemeng.2015.08.006 0098-1354/© 2015 Elsevier Ltd. All rights reserved. been focused on reducing the fresh water consumption. In this way, Wilson and von Broembsen (2010) studied the advantages and disadvantages to reuse wastewater in greenhouses. Anderson (2003) presented an analysis about the environmental benefits related to water reusing. Lazarova and Bahri (2004) proposed a strategy for planning water reusing.

Furthermore, the water reusing has been studied from different points of view, including removing heavy metals (Petruzzelli, 1989; Wu et al., 1998), health risks (Chang et al., 1996; Shuval et al., 1997) and irrigation costs (Schleich et al., 1996; Schwarz and Mcconnell, 1993). Hussain et al. (2002) presented a review about the characteristics and international regulations of wastewater utilized in agriculture, and the positive as well as negative impacts owing to the use of treated water. Besides, the rainwater harvesting has been the most used strategy to meet with the water demand for the agriculture in several parts of the world. In this regard, several works dealing with the hydrological impact on watersheds due to the application of domestic and agricultural rainwater harvesting have been reported (Ghimire and Johnston, 2013). Other approaches have implemented economic analysis of different rainwater harvesting structures (Goel and Kumar, 2005). Furthermore, Hatibu et al. (2006) determined the economic aspects of harvesting rainwater, He et al. (2007) analyzed the factors that affect the rainwater harvesting, and Jiang et al. (2013) presented the benefits in the consumption of fresh water and energy associated to the rainwater harvesting. In addition, some reviews about rainwater harvesting have been

^{*} Corresponding author. Tel.: +52 667 7137860x115. *E-mail address:* erc@uas.edu.mx (E. Rubio-Castro).

Notation		
Parameters		
α	exponent to consider the economies of scale	
Ac	crops area, ha	
Cf	fixed cost of equipment and accessories, US\$	
Cr	irrigation criteria	
Cu ^{sl}	unitary sell price of crops, US\$/ton	
Cu ^{op}	unitary cost of fresh water, US\$/m ³	
Cu ^{op}	unitary cost of fresh fertilizer, US\$/kg	
Cu ^{op}	unitary cost of electricity, US\$/kWh	
Cu ^{op}	unitary cost for pipe lines maintenance, US\$/kg	
Cu ^{op}	unitary cost for storage tanks maintenance, US\$/kg	
Cu ^{ốp} Cu ^{op}	unitary cost for treatment units maintenance,	
cuu	US\$/kg	
Cv ^{pip}	variable cost of pipelines,	
CV.	US\$/m ³ /h	
Cv ^{pu}	variable cost of pumps, US\$/kg	
Cv ^{sw}	variable cost of pumps, 055/kg	
Cv ^{tu}	variable cost of treatment units, US\$/m ³	
D	distance between units, m	
Dr	root depth, cm	
Fwpc	precipitated water in the crops, m ³	
Fwpst	precipitated water in the storage tanks, m ³	
Fwrc	capillary rise of water table, m ³	
g	acceleration due the gravity, $m^2 s^{-1}$	
gc	conversion factor for the acceleration due the grav-	
•	ity, kg m N^{-1} s ⁻²	
Не	height between process components, m	
η	efficiency	
K _F	factor used to annualize the inversion, year ⁻¹	
т	fractional interest rate per year, %	
п	number of years of operation, year	
v	velocity, m/s	
ho	density, kg/m ³	
θ_{fc}	field capacity, cm ³ of water/cm ³ of soil	
θ_{pwp}	permanent wilting point, cm ³ of water/cm ³ of soil	
Qwc^{in} $\Omega^{\max, pu}$	volumetric flowrate, m ³ /h	
$\Omega_{\rm Fcc}^{\rm max,pu}$	upper limit of the pump capacity to handle the	
- may nin	flowrate between crops, kg/h	
$\Omega^{\max, pip}_{ m Fcc}$	upper limit of the pipeline capacity to handle the	
max.pu	flowrate between crops, m ³ /h	
$arOmega_{ extsf{Fstc}}^{ extsf{max,pu}}$	upper limit of the pump capacity to handle the	
$\Omega_{\scriptscriptstyle m Fetc}^{ m max, pip}$	flowrate from storage tanks to crops, kg/h	
$\Omega_{\rm Fstc}^{\rm max,pip}$		
Omax.pu	flowrate from storage tanks to crops, m ³ /h	
$arOmega_{ extsf{Fcst}}^{ extsf{max,pu}}$	upper limit of the pump capacity to handle the	
omax nin	flowrate from the crops to storage tanks, kg/h	
$arOmega_{ extsf{Fcst}}^{ extsf{max,pip}}$	upper limit of the pipeline capacity to handle the	
Omax.pu	flowrate from the crops to storage tanks, m ³ /h	
$arOmega_{ extsf{Fctu}}^{ extsf{max,pu}}$	upper limit of the pump capacity to handle the	
	flowrate from the crops to treatment units, kg/h	
$arOmega_{ extsf{Fctu}}^{ extsf{max,pip}}$	upper limit of the pipeline capacity to handle the	
Omax	flowrate from the crops to treatment units, m ³ /h	
$arOmega_{ ext{Cfe}_{ ext{l}, ext{t}}}^{ ext{max}}$	upper limit for the concentration of each fertilizer in	
	the environmental discharge, kg of fertilizer/total kg	
$\Omega_{\rm Fst}^{ m max}$	upper limit for the capacity of storage tanks, m ³	
$\Omega_{\rm Ftu}^{\rm max}$	upper limit for the capacity of treatment units, m ³	
$\Omega_{\mathrm{w,t}}^{\mathrm{max}}$	limit for each type of fresh water in the periods, m ³	
Variables		
Variables		
Capc <i>Cfc</i>	capital cost, US\$/year fertilizer concentration in the crops, kg of fertil-	
Gι	izer/total kg	

Cfe	fertilizer concentration in the environment dis-	
Cf-	charge, kg of fertilizer/total kg	
Cfs	fertilizer concentration in the storage tanks, kg of fertilizer/total kg	
Cft	fertilizer concentration in treatment unit, kg of fer- tilizer/total kg	
Сорс	operating cost, US\$/year	
Fc ^{tot}	total flowrate in the crops, kg/h	
Fcc	flowrate between crops, kg/h	
Fcc ^{capc,pu}	pump capacity to handle the flowrate between crops, kg/h	
Fcc ^{capc,pip}		
Fce	flowrate from crops to environment discharge, kg/h	
Fcst	flowrate from crops to the storage tanks, kg/h	
Fcst ^{capc,p}	^{<i>u</i>} pump capacity to handle the flowrate from crops	
	to the storage tanks, m ³	
Fcst ^{capc,p}	^{ip} pipeline capacity to handle the flowrate from crops to the storage tanks, m ³ /h	
Fctu	flowrate from crops to treatment units, kg/h	
Fctu ^{capc,p}	I I I I I I I I I I I I I I I I I I I	
	to treatment units, m ³	
Fctu ^{capc,p}	^{ip} pipeline capacity to handle the flowrate from	
F	crops to treatment units, m ³ /h	
Fe	flowrate in the environment discharge, kg/h	
Ffc Ffca	flowrate fertilizer in the crops, kg/h	
Ffcc Efetu	fertilizer flowrate between crops, kg/h	
Ffctu	fertilizer flowrate from crops to treatment units, kg/h	
Fff	fresh fertilizer flowrate, kg/h	
Ffrc	reused fertilizer flowrate, kg/h	
Ffrt	fertilizer flowrate from the storage tanks to crops,	
5	kg/h	
Ffst	fertilizer flowrate from the storage tanks to crops,	
50	kg/h	
Fftue	fertilizer flowrate from treatment units to environ-	
Flc	ment discharge, kg/h fertilizers cost, US\$/year	
Fst ^{capc}	storage tanks capacity, m ³	
Fst ^{tot}	total flowrate in the storage tanks, kg/h	
Fstc	flowrate from storage tanks to crops, kg/h	
Fstc ^{capc,p}		
1500	tanks and crops, kg/h	
<i>Fstc^{capc,pip}</i> pipeline capacity to handle the flowrate from stor-		
	age tanks and crops, m ³ /h	
Ftu ^{capc}	treatment units capacity, m ³	
Ftu ^{tot}	treatment units flowrate, kg/h	
Ftue	flowrate from treatment units to the environment	
	discharge, kg/h	
Fwc	fresh water cost, US\$/year	
<i>Fwc^{abs}</i>	absorbed water flowrate by the crops (soil and	
	plants), m ³ /h	
$Fwc_{c,t}^{ev}$	lost water flowrate by evapotranspiration in the	
	crops, m ³ /h	
Fwc	water flowrate on each crop, m ³ /h	
Fwcc	water flowrate between crops, m ³ /h	
Fwct	water flowrate from the storage tanks to crops, m ³ /h	
Fwctu	water flowrate from crops to treatment units, m ³ /h	
Fwf	flowrate available fresh water, m ³ /h	
Fwfs	fresh water flowrate on each crop, m ³ /h	
Fwrt	reused water flowrate, m ³ /h	
Fwst	water flowrate from to crops to storage tanks,	
	m ³ /h	

Download English Version:

https://daneshyari.com/en/article/172071

Download Persian Version:

https://daneshyari.com/article/172071

Daneshyari.com