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A two-dimensional vertical (2DV) non-hydrostatic boundary fitted model based on a Godunov-type shock-
capturing scheme is introduced and applied to the simulation of waves from deep water up to the swash zone.
The effects of shoaling, breaking, surf zone dissipation and swash motions are considered. The application of a
Godunov-type shock-capturing algorithm together with an implicit solver on a standard staggered grid is pro-
posed as a new approach in the 2DV simulation of large gradient problems such as wave breaking and hydraulic
jumps. The complete form of conservative Reynolds averaged Navier–Stokes (RANS) equations are solved using
an implicitfinite volumemethodwith a pressure correction technique. The horizontal advection of the horizontal
velocity is solved by an explicit predictor–correctormethod. Fluxes are predicted by an exact Riemann solver and
corrected by a downwind scheme. A simple total variation diminishing (TVD) method with a monotonic up-
stream-centered scheme for conservation laws (MUSCL) limiter function is employed to eliminate undesirable
oscillations across discontinuities. Validation of the model is carried out by comparing the results of the simula-
tionswith several experimental test cases of wave breaking and run-up and the analytical solution to linear short
waves in deep water. Promising performance of the model has been observed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, coastal engineers and researchers have been widely
engaged in the numerical simulation of near-shore processes. Many of
such attempts are based on Boussinesq equations that are dependent
on empirical parameters for the simulation of wave breaking and dissi-
pation in the surf zone. Madsen et al. (1997) and Schaffer et al. (1993)
employed the concept of surface rollers and Karambas and Koutitas
(1992), Zelt (1991) and Kennedy et al. (2000) adopted an artificial vis-
cosity for this purpose.

Several methods with different degrees of complexity have been
proposed for the modeling of free surface flow. Lin and Liu (1998) and
Bakhtyar et al. (2009) used Volume of Fluid (VOF), Christensen and
Rolf (2001) applied Marker and Cell (MAC) and Wang et al. (2009)
adopted the Level Set Method for the simulation of wave propagation,
breaking, dissipation and run-up. These types of models can handle
complex water surface profiles in cases such as plunging breakers, but
they are limited by high computational expenses (Lin and Li, 2002).

Development of non-hydrostatic free surfacemodels which could be
applied to a relatively large coastal domain has been the target of many
research endeavors. Free surface level is obtained by vertical integration
of continuity equation and applying kinematic boundary condition. The

advantage of such models is the need for fewer vertical layers in the
simulation of free surface elevation, run-up and run-downwith a rel-
atively low computational cost in comparison with VOF, MAC and
level set methods. Zijlema and Stelling (2005), Yuan and Wu
(2006), Ahmadi et al. (2007) and Badiei et al. (2008) have used this
approach to simulate short wave propagation up to the incipient
breaking.

Non-hydrostatic models have been further developed to simulate
near shore wave processes. Zijlema and Stelling (2008) pioneered the
efforts along this line and proposed a model capable of considering
wave breaking, dissipation and run-up, using only two vertical layers.
Yamazaki et al. (2009) derived a set ofmodified shallowwater equation
by introducing the non-hydrostatic pressure into the depth averaged
momentum equation. Applying this method, theywere able to simulate
weak wave breaking and run-up. Ai and Jin (2012) introduced a multi-
layer non-hydrostatic model using the conservative form of the mo-
mentum equations. They simulated wave breaking and run-up success-
fully. All the models mentioned above use staggered grids in horizontal
direction. Ma et al. (2012) proposed a non-hydrostatic shock-capturing
modelwith a collocated grid in horizontal and Keller-Box grid in vertical
direction. They used a Godunov-type scheme with HLL Riemann
approximation for horizontal fluxes. They were able to simulate non-
linear wave propagation, weak breaking and run-up.

All of themodels described above are able to simulatewave breaking
with a few vertical layers (b10). However the test cases used for com-
parison are limited to weak wave non-linearity. Smit et al. (2013)
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adopted the hydrostatic front approximation (HFA) method proposed
by Tonelli and Petti (2010), for incipient breaking criterion and subse-
quent dissipation andmanaged to simulate wave breaking and dissipa-
tion with a limited number of layers (less that 5).

Most of the shock-capturingmethods of Godunov-type are designed
for collocated grids. Two alternatives are reported in the literature,
which are able to capture sharp shocks like hydraulic jumps and wave
breaking on a staggered grid. Zijlema et al. (2011) used the conservative
form of momentum equation and estimated thewater depth at velocity
point by an upwind estimator, as suggested by Stelling and Duinmeijer
(2003), and applied MacCormack predictor–corrector technique for
horizontal advection of horizontal velocities. Yekta and Banihashemi
(2011) is the second case in which the same upwind estimator and
Godunov-type shock-capturing for horizontal advection were used to
solve non-linear shallow water equation.

In this paper a 2DV non-hydrostatic shock-capturing model is
developed to solve the complete form of RANS, using an implicit finite
volume method. Here we have extended the Godunov-type shock-
capturing method proposed by Yekta and Banihashemi (2011) to a
2DV model. A boundary fitted standard staggered grid is used, which
makes the model suitable for irregular bed and surface level changes.

In order to simulate wave propagation and breaking by a limited
number of vertical layers, a non-hydrostatic pressure correction as sug-
gested by Badiei et al. (2008) is employed at the top layer and a hydro-
static front approximation (HFA) is applied.

In Section 2, the governing equations togetherwith boundary condi-
tions are introduced. Numerical techniques are presented in Section 3,
and in Section 4 the results of the simulations are validated by compar-
ing against experimental data onwave breaking and run-up and analyt-
ical solution to linear deep water waves.

2. Governing equations

Two dimensional vertical incompressible Reynolds averaged
Navier–Stokes equations are employed. Substituting the pressure
P = − ρg(z − η) + ρq, the following sets of equations are obtained:
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Here q represents the non-hydrostatic part of the pressure, η is
the surface level, ρ is the fluid density, g is the gravitational acceler-
ation, t is the time and u and w are respectively the horizontal and
vertical velocity components. νh and νv are respectively the horizon-
tal and vertical eddy viscosities. Horizontal eddy viscosity is obtained
by applying the Smagorinsky (1963)method and vertical eddy viscosity
is solved by k − ε method. For a small number of vertical layers (less
that 5) a constant vertical eddy viscosity is applied (υv = 10−4m2/s).

Kinematic boundary conditions at the free surface read as:

∂η
∂t þ u

∂η
∂x ¼ wjz¼η ð4Þ

and at the bed:

−u
∂h
∂x ¼ wjz¼−h ð5Þ

where h is the still water depth.

The dynamic free surface boundary condition, considering atmo-
spheric pressure at the surface level is:

Pa ¼ −ρg z−ηð Þ þ ρq ⇒ q ¼ Pa

ρ
≅ 0: ð6Þ

Free surface level η is an unknown that is calculated by integrating
continuity equation over depth and applying kinematic free surface
and bottom boundary conditions. The resulting equation reads as:

∂η
∂t þ

∂
∂x

Z η

−h
udz ¼ 0: ð7Þ

Incoming flow is best introduced at the lateral boundaries by hori-
zontal velocity or volume flux at each layer. Moving shoreline is imple-
mented at the shore boundary.

3. Numerical methods

The computational domain is discretized by a boundary fitted stan-
dard staggered grid with an equal number of layers, as shown in
Fig. 1. The layer thickness is obtained by dk = fk. D = fk. (η + h) with
0 b fk b 1 and∑ kfk = 1.

As shown in Fig. 2, pressure and other scalar parameters are defined
at cell centers and velocities are defined at the edges of each cell. Surface
and bottom levels are respectively defined at the center of the outer
edges of top and bottom cells of a water column.

In order to determine the layer thickness at the vertical edges of each
cell, we need the total water depth at that edge. This is calculated by an
upwind estimator according to Zijlema et al. (2011):
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Here U is the depth averaged velocity calculated at the edge of each
column, D is the total depth at the same edge and d is the layer
thickness.

3.1. Numerical discretization and solution algorithm

The projection method with a pressure correction technique pro-
posed by van Kan (1986) and time splitting algorithm are used for the
solution of governing equations. The set of equations are solved in two
steps. In thefirst step,momentumequation is solved considering advec-
tion, diffusion, surface level gradient, bottom friction and known
dynamic pressure gradient (from the previous time step). As a result
of this step, intermediate velocities are obtained. In the next step, in a

Fig. 1. Boundary fitted grid system deployed for 2DV calculations.
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