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This paper presents the application of the depth-integrated non-hydrostatic finite element model, CCHE2D-
NHWAVE (Wei and Jia, 2014), for simulating several types of coastal wave processes. Specifically, the model is
applied to (1) predict the swash zone hydrodynamics involving wave bore propagation, (2) resolve wave prop-
agation, breaking, and overtopping in fringing reef environments, (3) study the vegetation effect onwave height
reduction through both submerged and emergent vegetation zones using the drag force term technique, and
(4) simulate tsunami wave breaking in the nearshore zone and inundation in the coastal area. Satisfactory agree-
ment between numerical results and benchmark data shows that the non-hydrostaticmodel is capable ofmodel-
ing a wide range of coastal wave processes. Furthermore, thanks to its simple numerical formulation, the non-
hydrostatic model also demonstrates a better computation efficiency when comparing with other numerical
models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, increasing emphasis has been placed on the
coastal wave process because of the rapid development of the coastal
area and the tremendous impact of natural hazards (e.g., storm surge
and tsunamis). Accurate prediction ofwave and hydrodynamic process-
es in the coastal zone is essential to investigate coastalmorphology, pro-
tect coastal structures, andmitigate coastal hazards.With the increment
of our understanding about wave mechanics and the advancement of
computer science and technology, the numerical model has become
more and more popular for simulating nonlinear and dispersive wave
propagation from deep water to shallow water.

Nonlinear shallow water (NLSW) equations have been widely used
for simulating different kinds of wave processes owing to their simplic-
ity. In particular, they are well suitable to simulate the so-called long
waves (e.g., tide and tsunami wave) (e.g., Titov and Synolakis, 1998;
Wei et al., 2006). In addition, NLSW equations with appropriate conser-
vation properties are able to ensure accurate results for large gradient
flows over rapidly varying topography (Stelling and Duinmeijer,
2003), so they could also be applied to the shallow water region from
the surf zone to the shore. However, due to the lack of frequency disper-
sion, NLSW equations are not applicable for modeling waves in deep
water.

With the rapid expansion of computer power, there has been a trend
to solve the three-dimensional (3D) Reynolds–averaged Navier–Stokes
(RANS) equations for water waves (e.g., Higuera et al., 2013; Hsiao and
Lin, 2010, among others). With various free surface tracking methods,
the free surface elevation could be accurately captured by the RANS
model. This property makes the RANS model capable of simulating the
3D wave breaking process and detailed wave–structure interaction. In
addition to the RANS model, the mesh-free Lagrangian method of
Smoothed Particle Hydrodynamics (SPH) also demonstrates a good ca-
pability to resolve wave breaking and wave–structure interaction (e.g.,
Dalrymple and Rogers, 2006). Furthermore, both approaches are able to
simulate the flow turbulence in an elaborate way. Although RANS and
SPH models are valuable to simulate coastal waves on a small scale, it
is still very challenging to apply them to the real-life coastal wave pro-
cess because of their high computational cost.

In coastal engineering practice, several simplified but practical ap-
proaches are widely used to simulate the dispersive waves. Built upon
the linear wave theory, the mild-slope equation (e.g., Berkhoff, 1976)
describes the combined effects of diffraction and refraction for mono-
chromaticwave propagation by assuming thewater depth varies slowly
over a wave length (i.e., |∇h|/kh ≤ 1, here ∇ is the horizontal gradient
operator, h is thewater depth, and k is thewave number). This equation
is useful and accurate for predicting reflection from depth transitions
having slopes up to 1:3 (Booij, 1983). Continuous efforts have been
made to extend the mild-slope equation to account for substantial
depth variation (e.g., Suh et al., 1997), random waves, and wave
breaking (Kubo et al., 1992). However, it is rare to apply the
elliptic-type mild-slope equation in the swash zone, as one encoun-
ters the difficulty of specifying boundary conditions along the

Coastal Engineering 92 (2014) 31–47

⁎ Corresponding author at: Department of Civil Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA.

E-mail addresses: zpwei@ncche.olemiss.edu, zwei@jhu.edu (Z. Wei),
jia@ncche.olemiss.edu (Y. Jia).

http://dx.doi.org/10.1016/j.coastaleng.2014.07.001
0378-3839/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Coastal Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /coasta leng

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coastaleng.2014.07.001&domain=pdf
http://dx.doi.org/10.1016/j.coastaleng.2014.07.001
mailto:zpwei@ncche.olemiss.edu
mailto:zwei@jhu.edu
mailto:jia@ncche.olemiss.edu
http://dx.doi.org/10.1016/j.coastaleng.2014.07.001
http://www.sciencedirect.com/science/journal/03783839


shoreline, which are essential for solving the elliptic equation (Liu
and Losada, 2002).

Another popular approach for modeling wave transformation from
deep water to shallow water is to solve Boussinesq-type equations. The
classical Boussinesq equations of Peregrine (1967) lay the foundation
for severalwell-knownBounssinesq-type equations used today. In gener-
al, improvements have been obtained to alleviate, if not eliminate, the re-
strictions of weak dispersion and weak nonlinearity. To increase the
frequency dispersion, the classical Boussinesq equations could be extend-
ed by either adding a third-order term to consider the dispersion in deep
water (Madsen et al., 1991) or using the velocity at a reference depth in-
stead of the depth-integrated velocity (Nwogu, 1993). In addition, use of
high-order terms (e.g., Madsen et al., 2002) and multiple layers (Lynett
and Liu, 2004) in Boussinesq-type models could also improve the fre-
quency dispersion approximation. Meanwhile, the so-called highly or
fully nonlinear Boussinesq-type equations have also been derived in var-
ious ways (e.g., Madsen et al., 2003; Wei et al., 1995). Recent research of
Boussinesq-type models focuses on development of the shock-capturing
capability by locally switching back to the NLSWmodel and treating the
wave breaking with a shock-capturing numerical scheme (e.g., Roeber
et al., 2010; Shi et al., 2012, among others). However, Boussinesq-type
models still suffer from some well-known issues, e.g., complicated nu-
merical discretization, use of an extra dissipation term for energy dissipa-
tion due to wave breaking, and complex wetting and drying algorithm
due to the high-order dispersive terms.

A relatively new approach for modeling water waves is the so-called
non-hydrostatic method. The non-hydrostatic model still makes use of
the RANS equations, and it explicitly utilizes non-hydrostatic pressure to
describe the vertical acceleration of flows (Casulli and Stelling, 1998).
The distinction between the non-hydrostatic model and the aforemen-
tioned RANS models is that the former tracks the free surface elevation
using a single value function in terms of horizontal coordinates. As a re-
sult, it requires much fewer vertical grids than those of free surface track-
ing methods. This improvement makes the non-hydrostatic method
particularly attractive to the large-scale coastal wave process in terms of
computation efficiency.With the zeronon-hydrostatic pressure boundary
condition accurately specified at the free surface using an edge-based
compact difference scheme, the non-hydrostatic model is able to predict
the short wave propagation with only one or two vertical layers
(Stelling and Zijlema, 2003). To deal with wave breaking, the non-
hydrostaticmethod treats it as a hydraulic jump and is able to predict cor-
rect free surface elevation after the breaking process by ensuring mass
and momentum conservation (e.g., Zijlema and Stelling, 2008; Zijlema
et al., 2011). Furthermore, the transition of the steep front of a breaking
wave into a bore-like shape could also be facilitated by locally switching
the non-hydrostatic model into a hydrostatic model (Smit et al., 2013).
In the past decade there have been several non-hydrostatic models re-
ported in the literature; see, e.g., the depth-integrated finite difference
non-hydrostatic model of NEOWAVE (Yamazaki et al., 2008), the open-
source non-hydrostatic wave-flow model of SWASH (Zijlema et al.,
2011), and the σ-coordinate based Godunov-type finite volume non-
hydrostaticmodel of NHWAVE (Ma et al., 2012). Because of the simplicity
and efficiency of non-hydrostatic model, it has gainedmore andmore at-
tention in coastalwavemodeling community. See recentwork ofMa et al.
(2013), Rijnsdorp et al. (2014), and Smit et al. (2014), among many
others.

Recently, we incorporated the non-hydrostatic method into an
existing finite element free surface flow model, CCHE2D (Jia and Wang,
1999, 2001; Jia et al., 2002), and developed a depth-integrated non-
hydrostatic model, CCHE2D-NHWAVE (Wei and Jia, 2013, 2014), which
solves the conservation form of NLSW equations with the non-
hydrostatic pressure to account for the dispersion, and together with a
depth-integrated vertical momentum equation. By ensuring themomen-
tum is conserved at the discretized level and developing a simple but ef-
ficient wetting and drying algorithm by considering global mass
conservation, the model has demonstrated a good capability to simulate

a wide range of nearshore wave processes, including propagation, break-
ing, and run-up of nonlinear dispersive waves by validation against ana-
lytical solutions and benchmark experimental data. In this study,
continuous effort ismade to enhance and apply themodel to address sev-
eral types of more challenging coastal wave processes which are widely
encountered in engineering practice. The selected four benchmark tests
cover topics involve different wave phenomena (e.g., wave propagation,
breaking, and run-up), different coastal areas (e.g., the surf zone, the
swash zone, and fringing reef environments), and different periods of
waves (e.g., short waves and long waves). Consequently, the model can
be carefully evaluated from different aspects. Furthermore, for each of
the topics considered, two scenarios or conditions are provided to confirm
the robustness and the flexibility of the model, and we also show the su-
periority of the non-hydrostatic model over other models in modeling
coastal waves through these numerical experiments.

In the following sections, we first briefly review the numerical for-
mulation of CCHE2D-NHWAVE, and then we present numerical investi-
gations of four types of coastal wave processes using themodel. Each of
the four sections is structured as follows. A brief introduction presenting
the importance of the physical process analyzed is given first. Then the
physical experiment and numerical model setup is described. Next, the
numerical results are presented and compared with existing experi-
mental data. Finally, a short conclusion is drawn for the test case.

2. Numerical model

CCHE2D-NHWAVE was developed on the basis of an existing finite
element free surface flow model that solves the NLSW equtions (Jia
and Wang, 1999, 2001; Jia et al., 2002). The newly developed wave
module decomposes the total pressure into hydrostatic and non-
hydrostatic components, and it utilizes extra non-hydrostatic pressure
terms and a depth-integrated vertical momentum equation to account
for weakly dispersive waves (Wei and Jia, 2014). Although the readers
can refer to Wei and Jia (2014) for the governing equations of
CCHE2D-NHWAVE, we briefly review them here to make this work
self-explanatory. In a Cartesian coordinate system the computation do-
main is vertically bounded by the free surface elevation η(x, y, t) and the
bed elevation ζ(x, y), and the governing equations are given by:
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where t is the time; U, V, andW are the depth-integrated velocity com-
ponents in the x, y, and z directions, respectively; the water depth is
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