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The accurate generation and absorption of water waves in phase-resolving models are critical issues in
representing nearshore processes. Here, we present a source function method for combined wave generation
and absorption using modified sponge layers. This technique can be easily adapted to a wide variety of systems,
and does not require the solution of Green's functions but rather the simpler knowledge of solutions for free
waves. These solutions may be linear or nonlinear, regular or irregular, and generated waves can be made
arbitrarily accurate through simple selection of sponge layer coefficients. Generating–absorbing sponge layer
systems are shown to have a close correspondence to relaxation zones for wave generation if relaxation
coefficients are chosen appropriately.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The generation and absorption of waves at the boundary are impor-
tant for the numerical simulation of Boussinesq and other water wave
models. Relatively straightforward methods used by Nwogu (1993),
Kennedy and Fenton (1997) and many others specified the incident
wave information at the wavemaker boundary, with either no special
treatment for reflected waves or approximate boundary conditions.
These types of boundaries are compact and save on computational ex-
pense, but treatment for outgoing waves is by necessity approximate.
Other techniques include various widely-used internal generation
methods using either distributed or point sources in the governing
equations (Chawla and Kirby, 2000; Larsen and Dancy, 1983; Skotner
and Apelt, 1999; Wei and Kirby, 1999). Relaxation zones (Madsen
et al., 2003), where an imposed solution is gradually transitioned to
the governing equations over some distance, have been used both to
generate and absorb waves in high accuracy Boussinesq models.

Associated with the wave generation problem is that of absorbing
reflected or other waves that approach open boundaries. Here, by far
the most common techniques are the various sponge layers (e.g.,
Chawla and Kirby, 2000; Larsen and Dancy, 1983) that extract mass,
momentum, or both from the system, damping solutions to a steady-
state with no waves. For nonlinear wave generation, both direct impo-
sition of boundary fluxes and relaxation zones have been demonstrated
to work, but accurate nonlinear wave generation using internal sources
is quite difficult, and no good solutions exist.

This paper introduces and tests a combined generating–absorbing
condition for phase-resolving wave models that is straightforward to

apply to awide variety of systems. The condition does not require deriva-
tion of Green's functions as with many internal generators (Chawla and
Kirby, 2000) but instead requires a knowledge of free wave solutions,
which are simpler to derive and are known for awide range of equations.
These freewave solutionsmay be linear or nonlinear, regular or irregular,
andmaybe reproduced to arbitrary levels of accuracy. At the same time as
the system generates waves, it absorbs outgoing signals in the same way
as a typical sponge layer. Analytical and numerical tests show excellent
performance for a range of conditions including irregular, nonlinear,
wave generation.

2. Generating–absorbing sponge layers

The concept of sponge layers was introduced by Israeli and Orszag
(1981), and is widely used to remove unwanted signals at the edge of
domains, and prevents them from re-reflecting off open boundaries.
For the present paper, it may be extended and written as

A1½ � a;t
h i

þ L1½ � a;t
h i

þ otherterms ¼ ω1 A1½ � aimp−a
h i

þω2 L1½ � aimp−a
h i

ð2:1Þ

where [a](x,y,t) is the vector of variables (which would be (η,U,V)T for
many Boussinesq-type systems where η is the surface elevation and
(U,V) are the velocity variables, a,(−) ≡ ∂a/∂(−), ω1(x,y) and ω2(x,y)
are non-negative real damping coefficients. Thematrix [A1] contains al-
gebraic multipliers of [a,t] (e.g., 1 or h) while the matrix [L1] contains
spatial differential operators of [a,t] (e.g., h2∂2/∂x2). In other words, ω1

may be thought of as modifying pure time derivative terms in the sys-
tem,whileω2modifiesmixed space–time terms. Together, they contain
all time derivative terms that may be operated on by damping. Separate
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damping coefficients are used as it will be shown that there are
advantages and disadvantages to using both forcings, depending on
the situation.

The heart of the system is the vector of imposed quantities, [aimp](x,
y,z,t). For typical water wave implementations (Wei and Kirby, 1999)
velocities would be damped towards zero, with perhaps elevation
damping to a desired tide level, leading to a system which damps to-
wards quiescence. However, damping to zero is not always necessary
or even helpful. Here we specify that imposed quantities [aimp](x,y,t)
must be homogeneous solutions to the undamped system, i.e.,
Eq. (2.1) with ω1 = ω2 = 0. These imposed quantities are the desired
waves to be generated, and may be linear or nonlinear, steady or
unsteady.

By inspection, we see that if [a] = [aimp], the right hand side of
Eq. (2.1) is zero and the desired free wave propagates identically to
the undamped equations. However, if [a] ≠ [aimp], the right hand side
terms in Eq. (2.1) will gradually force the solution towards [aimp] in
the same way that a standard sponge layer forces velocities and/or
elevations to zero. In this way, the system can generate the imposed
waves at the same time as it damps other disturbances like reflected
waves. Generation and absorbing zones are placed along the
boundaries, and are the only locations where ω1 and ω2 are nonzero.
If [aimp] = 0, the system becomes a normal sponge layer.

The utility of this combined generation/damping layer is easy to see.
By not requiring two separate generation/absorbing layers as with Wei
and Kirby (1999) or Chawla and Kirby (2000), space is saved.
Undamped free waves are relatively easy to derive compared to the
Green's functions in internal wavemakers, or may even be taken from
other model outputs. Nonlinear waves, which are a significant issue
for internal wave generators using Green's functions, are easy to gener-
ate with this new method as long as free wave solutions are known for
the system variables. There are only two significant issues to be dealt
with: (1) making certain that the generating/absorbing layer is
long enough and strong enough to generate and dissipate waves, and
(2) making sure that there is no significant re-reflection from free
waves entering the sponge layer from the domain. Similar systems
have been used with good results in compressible flow computational
fluid dynamics to generate and absorb acoustic waves (Bodony, 2006),
which are equivalent in many ways to shallow water equations.

Analytic proofs of the system are difficult nonlinearly, but systems
are relatively straightforward to analyze for the case of a linear flat
bed. However, although nonlinear analytics are difficult, demonstra-
tions of nonlinear accuracy are not, as will be shown. Here, we perform
analysis in one horizontal dimension for Boussinesq and shallow water
systems although extension to two horizontal dimensions is straightfor-
ward. For a linear flat bed with one horizontal dimension, numerous
sets of Boussinesq equations and shallow water equations may be
represented as (e.g., following Wei and Kirby, 1999), after including
the generating/absorbing terms,

η;t þ hU;x þ α1h
3U;xxx ¼ ω1 ηimp−η

� �
U;t þ gη;x þ αh2U;xxt ¼ ω1 Uimp−U

� �
þω2αh

2 Uimp;xxt−U;xxt

� � ð2:2Þ

where g is gravitational acceleration and h is the water depth. To obtain
nonlinear shallow water equations, set α1 = α = 0; for Nwogu's
(1993) equations, α1 = α + 1/3; to obtain Peregrine's (1967) depth-
averaged equations, α1 = 0, α = −1/3.

The undamped (ω1 = ω2 = 0) solution to these equations for free
waves traveling in the positive and negative x-directions is

η F ¼ η0 exp i kx−σtð Þ½ � þ η1 exp i −kx−σtð Þ½ � þ c:c:

U F ¼ u0 exp i kx−σtð Þ½ �−u1 exp i −kx−σtð Þ½ � þ c:c:
ð2:3Þ

where the radial frequency, σ, is given by

σ2 ¼ gk2
1−α1 khð Þ2
1−α khð Þ2 ð2:4Þ

and k is the cross-shore wavenumber for a free wave. The relationship
between velocities and surface elevations is

u0 ¼ η0
gk

σ 1−α khð Þ2� � : ð2:5Þ

Note again that these are also solutions to the damped equations if we
take ηimp = ηF, and Uimp = UF. Thus, the undamped result is a particular
solution to the damped equation. To find the full solution to the damped
equation, wemerely need to find the homogeneous dissipative solution
(with ηimp = 0, Uimp = 0) and apply boundary conditions based on the
problem geometry. The homogeneous solution depends strongly on the
spatial variation of the sponge layers,

ω1 xð Þ ¼ eω1=L
� �

f xð Þ; ω2 xð Þ ¼ eω2=L
� �

f xð Þ ð2:6Þ

where L is the length of the sponge layer.
Standard sponge layers typically aremaximum at the computational

boundaries, and have a smooth variation to zero at their furthest extent
in the domain. Here, we assume a polynomial variation,

f xð Þ ¼ nþ 1ð Þ x
L

� �n
;0 ≤ x ≤ L;

0; x b 0
ð2:7Þ

so that the integrated strength of the sponge layers∫L

0
ωidx ¼ eωi; i ¼ 1;2.

Analytical behavior of the generating–absorbing sponge layer is
most easily demonstrated using the shallow water equations, as these
have straightforward solutions. Details will differ once dispersive
terms are added but, as will be shown, the behavior is generally similar
although there are some significant differences; e.g.,ω2 has no effect on
shallowwater equations as there are nomixed space–time terms. In this
case, the general solution to this system in the region 0 ≤ x ≤ L is, for
ηimp and Uimp that satisfy the undamped equations,

η ¼ eηimpR exp −ikxþ iσtð Þ þ eηimpL exp ikxþ iσtð Þ

þ AL exp ikxþ iσtð Þ exp eω1 C0
x
L

� �nþ1
� �

þ AR exp −ikxþ iσtð Þ exp −
eω1 C0

x
L

� �nþ1
� �

þ c:c:

ð2:8Þ

U ¼ eηimpR

ffiffiffiffiffiffiffiffi
g=h

q
exp −ikxþ iσtð Þ−eηimpL

ffiffiffiffiffiffiffiffi
g=h

q
exp ikxþ iσtð Þ

−AL

ffiffiffiffiffiffiffiffi
g=h

q
exp ikxþ iσtð Þ exp eω1 C0

x
L

� �nþ1
� �

þ AR

ffiffiffiffiffiffiffiffi
g=h

q
exp −ikxþ iσtð Þ exp −

eω1 C0
x
L

� �nþ1
� �

þ c:c:

ð2:9Þ

where C0 ≡ (gho)1/2 is the long wave speed.
This systemhas three parts: (1) undamped left-and-rightwardmov-

ing imposed waves, (2) leftward-moving damped waves, and (3)
rightward-moving damped waves. The general system plus boundary
conditions will then give the performance of specific implementations.
In themost simple, with ηimp = Uimp = 0, a rightwardmoving damped
free wave that enters the sponge layer at x = 0 is reflected by a wall
boundary at x = L, and re-exits moving leftward at x = 0 will
be damped by a factor of exp −2eω1=C0

	 

. Thus, for a damping factor

of eω1=C0 ¼ 5 , the reflected wave will only be 4.5 × 10−5 times the
size of the incoming wave, which is negligible.

2 Y. Zhang et al. / Coastal Engineering 84 (2014) 1–9



Download English Version:

https://daneshyari.com/en/article/1720755

Download Persian Version:

https://daneshyari.com/article/1720755

Daneshyari.com

https://daneshyari.com/en/article/1720755
https://daneshyari.com/article/1720755
https://daneshyari.com

