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a  b  s  t  r  a  c  t

This paper  presents  a new  discretization  method  to  solve  one-dimensional  population  balance  equations
(PBE)  for  batch  and  unsteady/steady-state  continuous  perfectly  mixed  systems.  The  numerical  technique
is  valid  for  any  size  change  mechanism  (i.e., growth,  aggregation,  attrition,  breakage  and  nucleation
occurring  alone  or in  combination)  and  different  discretization  grids.

The developed  strategy  is based  on the  moving  pivot  technique  of  Kumar  and  Ramkrishna  and  the
cell-average  method  of  Kumar  et al. A novel  contribution  is  proposed  to  numerically  handle  the  growth
and attrition  terms,  for  which  a new  representation  of the  number  density  function  within  each  size
class  is developed.  This  method  allows  describing  the  number  particle  fluxes  through  the  class  interfaces
accurately  by  preserving  two  sectional  population  moments.

By  comparing  the numerical  particle  size  distributions  with  analytical  solutions  of  one-dimensional
PBEs  (including  different  size  change  mechanisms  and  particle-size  dependent  kinetics),  the  accuracy  of
the  proposed  numerical  method  was  proved.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Particulate systems play an important role in a wide variety
of industrial processes (among others: mining, food processing,
pharmaceuticals and fertilizers manufacture). Changes in parti-
cle size distributions (PSDs) often take place in these industries
due to different mechanisms, which can occur either alone or in
combination, such as aggregation, growth, breakage, attrition and
nucleation (Gerstlauer et al., 2006; Ramkrishna, 2000).

An appropriate modeling approach for quantify PSDs is the con-
cept of population balance equation (PBE), which was developed
several decades ago (Hulburtz and Katz, 1964). Ramkrishna (2000)
defined the PBE as an equation to describe the density of a suit-
able extensive variable, usually the particle number (in terms of
the number density function), so that the PBE represents a num-
ber balance on particles of a specific state. Significant efforts were
those of Hulburtz and Katz (1964), Randolph and Larson (1971) and
Ramkrishna (2000) to formalize a generic PBE capable of quantify-
ing the different mechanisms by which particles of a specific state
can either appear in or disappear from the system. Mathematically
the PBE corresponds to a non-linear partial integro-differential
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equation, which presents only very few analytical solutions for
some ideal cases. On the other hand, numerical solutions require
substantial computational resources because, in practical engineer-
ing processes, PSDs may  extend over several orders of magnitude
and can be very sharp (Vanni, 2000; Qamar, 2008). Moreover, some
methods exhibit lack of stability and accuracy of the solution. Since
there is a great variety of processes that are studied by means of
modeling and simulation (processes design, control and optimiza-
tion), there is still need of numerical methods development to solve
those mathematical models that include PBEs (Pinto et al., 2008;
Utomo et al., 2009).

Several numerical methods have been proposed/used in the lit-
erature to solve PBEs, among others, the methods of: moments
(Hulburtz and Katz, 1964; Motz et al., 2002; Madras and McCoy,
2004; Marchisio and Fox, 2005; Bajcinca et al., 2014), characteristics
(Kumar and Ramkrishna, 1997; Pilon and Viskanta, 2003; Qamar
and Warnecke, 2007), finite differences/discretization (Marchal
et al., 1988; Hounslow et al., 1988; Kumar and Ramkrishna,
1996a,b; Ma  et al., 2002) and Monte Carlo (Smith and Matsoukas,
1998; Kruis et al., 2000; Lee and Matsoukas, 2000; Lin et al.,
2002). Frequent problems related to the numerical solution of PBEs
include, among others, the inaccurate calculation of the PSD for
strong aggregation processes, numerical instabilities for growth
processes and stiffness of the equations system for rapid particle
nucleation (Maurstad, 2002; Kiparissides, 2006).
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Nomenclature

A attrition rate (m/s)
b breakage rate (s−1)
b0 constant in the breakage rate in Eq. (106) (m−1 s−1)
b′

0 constant in the breakage rate in Eq. (129) (m−3 s−1)
Bnuc discrete nucleation rate (s−1)
C1i parameter for the linear approximation in Eq. (45)

(m−2)
C2i parameter for the linear approximation in Eq. (45)

(m−1)
dp particle diameter (m)
dpcrit

critical diameter in Case 3 (m)
dpi

mean diameter in class i (m)
dnuc diameter of particles born by nucleation (m)
dnv number–volume mean diameter (m)
Dpi

lower node in class i (m)
D̄pi

arithmetic mean diameter in class i (m)

D̄A
p i

average diameter of particles born by aggregation in
class i (m)

D̄B
pi

average diameter of particles born by breakage in
class i (m)

D̄B
pj→i

average diameter of particles born by breakage in
class i from class j (m)

D̄in
p average diameter of particles of class i in the inlet

flowrate (m)
G growth rate (m/s)
G0 constant in Eq. (82) (m1−q/s)
G′

0 constant in Eq. (93) (m/s)
G′′

0 constant in Eq. (119) (s−1)
hA+ particle birth rate by aggregation (m−1 s−1)
hA− particle death rate by aggregation (m−1 s−1)
hB+ particle birth rate by breakage (m−1 s−1)
hB− particle death rate by breakage (m−1 s−1)
HA+

i
flow of particles born by aggregation in class i (s−1)

HA−
i

flow of particles dead by aggregation in class i (s−1)
HB+

i
flow of particles born by breakage in class i (s−1)

HB−
i

flow of particles dead by breakage in class i (s−1)
I0 modified Bessel function of the first kind of order

zero
I1 modified Bessel function of the first kind of order

one
k index of summation in Eqs. (76) and (77)
n number density function (m−1)
n0 number density function (m−1)
ni discrete number density function in class i (m−1)
ṅin number density function of the particles entering

the system (m−1 s−1)
ṅnuc rate of number density function of particles by

nucleation (m−1 s−1)
ṅout number density function of the particles leaving the

system (m−1 s−1)
N0 initial total particle number
Ni particle number in class i
Ṅiin

inlet number flow rate of particles in class i

Ṅinuc flow of particles born by nucleation in class i (s−1)
Ṅiout

outlet number flow rate of particles in class i
p exponent in Eq. (82)
P breakage probability function (m−1)
q index of the conserved population moment
Qattrition volume flow rate leaving the particles population by

attrition (m3/s)

Qgrowth volume flow rate fed to the system which con-
tributes to the particle growth (m3/s)

Qin inlet volumetric flow rate (m3/s)
Qout outlet volumetric flow rate (m3/s)
r geometric grid ratio between classes
S total particle surface area (m2)
V total particle volume (m3)
V0 initial total particle volume (m3)
t time (s)
T dimensionless time
x integration variable (m)
x′ integration variable (m)
x′′ integration variable (m)

Greek letters
˛i parameter defined in Eq. (52)

 ̌ aggregation kernel (s−1)
� i parameter defined in Eq. (57)
ı Dirac delta function
� half width of the pulse defined in Eq. (96) (m)
� Gamma  function
�j jth population moment (mj)
�ji

jth sectional population moment in class i (mj)
�̄ arithmetic mean diameter of the PSD (m)
�0 arithmetic mean diameter of the initial PSD (m)
� average number of particles formed by breakage
�0 standard deviation of the initial PSD (m)
� mean residence time (s)

Subscripts
i class of the discrete PSD
j class of the discrete PSD
k class of the discrete PSD

In particular, discretization techniques have been one of the
most popular numerical methods. They consist in dividing the con-
tinuous range of particle specific state (usually the particle size) into
discrete classes and discretizing the density function in the domain
of the internal coordinate by concentrating the particles within
each class on a mean class size. Several discretization methods are
available in the literature, which basically differ in the choice of
the discretization grid and the global population properties that are
conserved (Hounslow et al., 1988; Kumar and Ramkrishna, 1996a,b;
Vanni, 2000; Nopens et al., 2005).

Hounslow et al. (1988) developed a discretization procedure for
growth, nucleation and aggregation processes, limited to the use
of a geometric grid. Vanni (2000) extended that method to break-
age processes. Kumar and Ramkrishna (1996a) also developed a
discretization method (called the fixed pivot technique) to solve
PBEs for batch systems with aggregation and breakage, which is
capable to predict desired global properties of the PSDs by using an
arbitrary discretization grid. Although results of fixed pivot tech-
nique proved to be generally very accurate for estimating PSDs, the
method failed to correctly predict the PSDs for aggregation pro-
cesses in large size ranges represented on a coarse geometric grid.
Then, Kumar and Ramkrishna (1996b) developed a new discreti-
zation technique to overcome this problem by defining moving
pivots that concentrate the particle number of a given size range.

Kumar et al. (2006) developed a numerical procedure for solv-
ing PBEs for batch aggregation processes that guarantees the exact
conservation of two population properties of interest. This tech-
nique (called the Cell Average Technique) involves the computation
of the average size of newborn particles by aggregation and their
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