
Computers and Chemical Engineering 84 (2016) 162–170

Contents lists available at ScienceDirect

Computers  and  Chemical  Engineering

j our na l ho me  pa g e: www.elsev ier .com/ locate /compchemeng

Model  predictive  control  with  non-uniformly  spaced  optimization
horizon  for  multi-timescale  processes

Chee  Keong  Tan, Michael  James  Tippett,  Jie  Bao ∗

School of Chemical Engineering, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 23 April 2015
Received in revised form 31 July 2015
Accepted 16 August 2015
Available online 7 September 2015

Keywords:
Model predictive control
Non-uniformly spaced optimization
horizon
Multi-timescale processes
Stability
Dissipativity

a  b  s  t  r  a  c  t

Many  chemical  processes  exhibit  disparate  timescale  dynamics  with  strong  coupling  between  fast,  mod-
erate  and slow  variables.  To  effectively  handle  this  issue,  a model  predictive  control  (MPC)  scheme  with
a non-uniformly  spaced  optimization  horizon  is proposed  in this  paper.  This  approach  implements  the
time  intervals  that are  small  in the near  future but  large  in the  distant  future,  allowing  the  fast,  moderate
and  slow  dynamics  to  be included  in  the  optimization  whilst  reducing  the number  of  decision  variables.
A  sufficient  condition  for ensuring  stability  for  the  proposed  MPC  is developed.  The  proposed  approach
is  demonstrated  using  a case  study  of an  industrial  paste  thickener  control  problem.  While  the  perfor-
mance  of  the  proposed  approach  remains  similar  to a conventional  MPC,  it reduces  the  computational
complexity  significantly.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Over the past few decades there have been significant devel-
opments in model predictive control (MPC), both in terms of
theoretical developments and industrial applications (Qin and
Badgwell, 2003). The key idea of MPC  is to optimize a control tra-
jectory based on a process model by solving a constrained finite
horizon optimization problem (Mayne et al., 2000). It has made
a significant impact on the chemical and process industries due
to its ability to handle constraints explicitly and deliver high lev-
els of performance (García et al., 1989). In MPC, the length of the
optimization horizon (which includes the prediction and control
horizons) is to be decided. Although a longer horizon leads to
an increase in performance (Geyer, 2011), it is accompanied by a
higher computational complexity.

Many chemical processes (e.g., continuous stirred tank reac-
tors (Chang and Aluko, 1984) and biochemical reactors (Bailey
and Ollis, 1976)) have dynamics with multiple timescales. Control
design for these systems should take into account the presence of
timescale multiplicity or it may  lead to performance deterioration
and closed-loop instability (Christofides and Daoutidis, 1996). For a
multi-timescale process, an MPC  with a sufficiently long optimiza-
tion horizon is often required to fully enclose the transients of all
dynamics. However, this is not always possible as it may  require
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a small time interval (e.g., �t1 in Fig. 3) and a long optimization
horizon, resulting in a very complex optimization problem with
a large number of decision variables. This has motivated research
into approaches to resolve the problem.

The most common approach involves the use of the singular
perturbation theory (Kokotović et al., 1999). This method has been
widely applied, e.g., in the MPC  of nonlinear singularly perturbed
systems (Chen et al., 2011, 2012; Ellis et al., 2013). For example, in
Chen et al. (2012), the process system is decomposed into two  sep-
arate reduced-order subsystems evolving in different timescales.
Then, a “fast” and a “slow” MPC  are designed to regulate the fast
and slow dynamics respectively, allowing all dynamics of the pro-
cess system to be effectively optimized by the MPC  controllers.
However, this approach requires explicit timescale separation,
which may  not be the case for many processes, e.g., distillation
columns (Lévine and Rouchon, 1991) and the thickening process
(Bürger et al., 2004) that exhibit dynamics with a continuum of
time constants (with the exception that under several necessary
conditions, a system with non-explicit timescale separation may
be transformed into a standard singularly perturbed form (Kumar
et al., 1998)). In addition, this method requires measurements for
both fast and slow variables, which may not always be available,
e.g., concentration measurements may  not be available in a reac-
tor due to cost limitations (Colantonio et al., 1995). While there
are extensions to singular perturbation approaches (Esteban et al.,
2013), they are mainly applicable to two-timescale systems.

Another approach is to represent the control trajectories as
functions of wavelets and optimize the trajectories by solving
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the wavelet coefficients. This allows the trajectories to contain
the dynamics with different timescales (Krishnan and Hoo, 1999).
However, when the optimization horizon is long, this approach
involves a large number of wavelet coefficients, which increases
the computational burden (Wang et al., 2015).

In this paper, we propose a modification to the conventional
MPC  algorithm for processes exhibiting multi-timescale dynamics.
The approach optimizes the control trajectories with a non-
uniformly spaced receding optimization horizon – using small time
intervals for good accuracy (e.g., �t1 in Fig. 3) in the near future,
and large time intervals (e.g., �t3 in Fig. 3) for reduced compu-
tational burden in the distant future. As the proposed approach
involves a single controller, it does not require explicit separation
of the fast and slow dynamics in the controller design and allows
for an arbitrary number of time intervals to be chosen to deal with
multi-timescale processes. It can significantly reduce the number of
decision variables and thus the computational complexity. It should
be pointed out that the proposed approach is different to multi-
rate MPC, where different sampling rates are used for sensors and
actuators (Scattolini and Schiavoni, 1995).

While most MPC  approaches employ uniformly spaced opti-
mization horizons, there are some studies on approaches similar
to MPC  with non-uniformly spaced optimization horizons. For
example, in Goodwin et al. (2006), the idea of non-uniform time
quantization was developed for open-loop optimization of mine
planning. In Halldorsson et al. (2005), non-equidistant horizons
were used to find the open-loop optimal control trajectories, lead-
ing to reduced computational burden. Gondhalekar and Imura
(2006) studied the effect of varying time intervals to the cost func-
tion. However, the resulting control policies often do not guarantee
stability, as existing stability results (e.g., based on the terminal
constraint (Mayne et al., 2000)) are not directly applicable to the
above approaches (Halldorsson et al., 2005). Another way to reduce
computational complexity is known as “move blocking” which
constrains blocks of adjacent-in-time control action to have the
same values (Cagienard et al., 2007; Gondhalekar and Imura, 2010).
However, move blocking can be very computationally demanding
(at least offline computation) when a long optimization horizon
is used. Similar to the non-equidistant horizon based optimiza-
tion approaches discussed above, the stability of MPC  with move
blocking is still an open problem (Gondhalekar and Imura, 2010).
While the “moving window blocking” approach in Cagienard et al.
(2007) ensures stability, it cannot be used to deal with the multi-
timescale process dynamics because it requires the blocked inputs
to be shifted at each time-step.

In this work, a condition to ensure stability of the closed-loop
system of the proposed MPC  approach and the process is also
derived. The implications of the proposed MPC  on the control per-
formance and computational complexity are discussed.

This paper is organized as follows: processes with multi-
timescale dynamics are discussed in Section 2 with a motivating
example of a paste thickening process used in a coal prepara-
tion plant. Section 3 presents the main idea of the proposed MPC
algorithm and develops the stability of the approach. Section 4 illus-
trates the proposed approach with simulation studies, followed by
the conclusion in Section 5.

In this paper, the following notations are employed: �(A)
denotes the eigenvalues of matrix A. AT represents the transpose of
matrix A. A � 0(�  0) is used to represent a positive (semi-)definite
matrix.

2. Processes with multiple timescales dynamics

Many industrial processes have dynamics with multiple
timescales, e.g., continuous stirred tank reactors (Chang and Aluko,
1984), biochemical reactors (Bailey and Ollis, 1976), distillation

Fig. 1. A continuous operating paste thickener.

columns (Lévine and Rouchon, 1991), and the thickening process
(Bürger et al., 2004). In this section, we illustrate this issue with an
example of the thickening process which is widely used in min-
eral and mining industries, as well as in wastewater treatment
plants. It is used to separate water from solids in a slurry. The
process involves sedimentation, i.e., settling of tiny particles, often
enhanced with flocculant to form larger aggregates. At the same
time, overflow which consists of a negligible amount of particulate
matter is recycled, thus reducing plant water requirement.

Fig. 1 shows a continuous paste thickener fed with a slurry of
flow rate QF, with the product (thickened slurry) removed at a rate
of QD from the bottom of the thickener. The overflow from the thick-
ener QF − QD is recycled back to the plant, and is assumed to contain
water only. The critical concentration is �c, which divides the pro-
cess into the hindered settling and the compression zones. At this
point, also known as the gel point, particles start to coalesce due to
close proximity to one another, forming a bed layer which further
enhances the dewatering ability.

The sedimentation–consolidation process can be described
using the model below (Bürger et al., 2004):
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where � is the solids volume fraction as a function of time (denoted
by t) and the height above the base of the paste thickener (denoted
by x). The cross sectional area is S(x), QD(t) is the underflow vol-
umetric flow rate at the bottom of the thickener, fbk(�) is the
Kynch batch flux density function, often formulated as (Michaels
and Bolger, 1962):
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for 0 ≤ � ≤ �max,

0 otherwise,

(2)

where v∞ is the terminal settling velocity of a single particle in an
infinite dilution. The parameter N is related to the shape of particles
(Moreland, 1963). A(�) is the consolidation function, which can be
described as:

A(�) =
∫ �

0

a(s) ds, a(�) = − fbk(�)� ′
e(�)

��g�
,  (3)

where �� is the difference in solid-liquid density and g is the
gravitational acceleration. The solid stress function �e(�), which
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