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Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of
model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally inten-
sive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave
conditions without performing additional, continuous numerical simulations. The archive of model output
contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-
series of wave height, period, direction, and associated uncertainties are constructed at locations included in
the numerical model domain. The confidence limits are derived using statistical variability of oceanographic
parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf
of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant
wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave
period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to
existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low
computational expense. The constructed time-series can be developed to support a variety of applications
including climate studies and other situations where a comprehensive survey of wave impacts on the coastal
area is of interest.

Published by Elsevier B.V.

1. Introduction

There is an increasing need for accurate, site-specific, and timely
estimates of coastal wave properties that can be used to design marine
infrastructure, perform coastal vulnerability assessments (e.g., Stockdon
et al., 2012), evaluate potential sites for wave energy extraction (Defne
et al., 2009; Reikard, 2009), and drive empirical (Stockdon et al., 2006;
Yates et al., 2009) and process-based (e.g., XBeach, Roelvink et al.,
2009) nearshore models. Wave properties for these applications are
generally obtained from sparse buoy arrays (hindcast or nowcast) or a
variety of process-based wave transformation models (hindcast,
nowcast, and forecast). Themodels can range significantly in resolution,
scale, and computational expense. Oftentimes highly spatially-resolved
nearshore models are run deterministically by initializing with waves
observed at buoy locations and allowing the model to transform the
waves to the site of interest. However, these can be computationally ex-
pensive depending on the length of the time-series and number ofwave
conditions required, especially if statistical uncertainties are required
(e.g., sensitivity testing). Alternately, operational wave forecasts, forced
with predicted global and basin-scale wind fields, archive forecast

output for future use in hindcast studies (e.g., WAVEWATCH-III®,
Tolman (2008)). Despite the overall good skill of these forecasts, the
resolution is typically O (3–7 km) which is insufficient to resolve
some important shelf-scale features and nearshore wave transforma-
tion processes.

In order to improve the efficiency ofwave prediction over operation-
al or deterministic models, methods have been developed that exploit
machine-learning techniques (e.g., Neural Networks, fuzzy logic, and
Bayesian methods) to estimate wave characteristics at one location
given information at another (e.g., Camus et al., 2011; Londhe, 2008;
Londhe and Panchang, 2007; Plant and Holland, 2011a,b). While this
is useful, for example, to fill data gaps at observational buoys, these
techniques (“machine learning”) do not provide information on the
physical transformation of waves between the sites and require histor-
ical data at both locations to train the algorithms and determine the
relationship between the wave fields at each site. The applicability of
these methods is limited when information is desired at locations
where no buoy has ever been deployed. One solution if observational
data at the target site are unavailable is to use deterministic model
runs to train the machine-learning models; however, the efficiency
benefit of the machine-learning technique is then lost.

In a similar fashion, O'Reilly and Guza (1993) compared simple re-
fraction and refraction–diffraction models and, from the model output,
derived wave energy transformation coefficients to estimate coastal
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wave properties based on offshore wave information. The coefficients
are a function of frequency and direction and are region-specific.
The method is computationally efficient but is only applicable for low-
frequency swell in regionswhere offshore wave conditions are spatially
homogeneous. Similar to the operational and deterministic methods,
statistical confidence limits are not reported.

Here we present a probabilistic time-series construction technique
that uses a process-based coastal and nearshore numerical wave
model to transform deep water waves inshore. In contrast to the wave
transformation or machine learningmethods, this probabilistic method
can construct a continuous wave time-series over a spatial domain of
interest using a set of climatologically-based numerical simulations.
The numerical model accounts for physical wave transformation
processes, does not require algorithm training and does not require
computationally expensive model runs. In addition, it is not limited to
sites with available observations andmay be applied to analyze possible
future scenarios. We demonstrate the validity of the technique using
time-series that span multiple years and locations and derive statistical
uncertainty estimates based on historical distributions of the wave
climate.

The probabilistic time-series construction method is described in
Section 2. Results from two hindcasted probabilistic time-series con-
structions at locations in 12 m and 30 m water depths are presented
in Section 3. In Section 4 we discuss limitations and sensitivity of the
technique to some of our assumptions, and conclusions are synthesized
in Section 5.

2. Methods

2.1. Derivation of wave scenarios

The probabilisticmethod relies on the establishment of a discrete set
of climatologically-derived base model simulations, or wave model
scenarios, representing the wave conditions within the domain under

a variety of offshore conditions. Wave model scenarios were defined
from a climatological binning of offshore wave observations. The data
used for the climatological assessmentwere obtained from the National
Data Buoy Center (NDBC) buoy 42040 from April 2010 to May 2012.
This buoy is located in the Gulf of Mexico in approximately 165 m
water depth (labeled 42040 in Fig. 1). The wave observations from
this time period, which peaked at 5.1 m, were divided into 5 significant
wave height (Hs) bins corresponding to 0 m b Hs ≤ 0.5 m, 0.5 m b

Hs ≤ 1.0 m, 1.0 m b Hs ≤ 1.5 m, 1.5 m b Hs ≤ 2.0 m, and Hs N 2.0 m
and 16 wave direction bins, each spanning 22.5°, from 0 to 360°
(Fig. 2). The average of all the observed wave heights and directions
that fall within each of the 80 climatological bins defines the targeted
climatological conditions, and thus the offshore conditions for each
wave model scenario.

To avoid the restriction of assuming homogeneity along the bound-
aries of our coastal model domain by applying only the targeted (aver-
age) significant wave height, peak period, and peak direction for each
climatological bin, we used operational wave model forecast output
along the boundaries of the domain. We performed a multivariate
analysis to identify a best-match time in the buoy time-series when
observed conditions most closely matched the average conditions for
each climatological bin. The selected hour was required to come from
a time period when the observed conditions met the targeted values
for at least 6 h, rather than from a time period when conditions were
rapidly transitioning from one sea state to another. Despite not being
included as a constraint, the wave period and offshore winds for the
selected hour representing each bin were also found to closely match
bin-averaged values.

For each of the 80 model scenarios, spatially-varying bulk wave
characteristics (height, period, direction) from the best-match times
were extracted from archived NOAA WAVEWATCH-III® 4 (7.5 km)
U.S. East Coast and Gulf of Mexico wave model results (Tolman, 2008)
along all boundaries of our coastal domain (Fig. 1). This method de-
scribed the spatially heterogeneous wave climate over a large region

Fig. 1.Wavemeasurement locations (black circles) in the northern Gulf of Mexico. The coastal wavemodel domain is delineated by the solid black line and state boundaries are indicated
by the dashed lines.

54 J.W. Long et al. / Coastal Engineering 89 (2014) 53–62



Download English Version:

https://daneshyari.com/en/article/1720788

Download Persian Version:

https://daneshyari.com/article/1720788

Daneshyari.com

https://daneshyari.com/en/article/1720788
https://daneshyari.com/article/1720788
https://daneshyari.com

