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a  b  s  t  r  a  c  t

Algorithms  and  software  are  presented  for  efficiently  computing  reference  solutions  of  the  general  rate
model with  proven  error  bounds.  Moreover,  algorithms  and software  are  presented  for  efficiently  com-
puting  moments  of  arbitrary  order.  The  methods  are  based  on numerical  inverse  Laplace  transform,
and  support  both  quasi-stationary  and  dynamic  linear  binding  models.  The  inlet  concentration  pro-
files  are treated  in  a most  general  way  using  piecewise  cubic  polynomials.  Algorithmic  differentiation
obviates  manual  derivation  of the  required  derivatives.  Arbitrary  precision  arithmetics  are  applied  for
minimizing  numerical  roundoff  errors,  and  several  convergence  acceleration  techniques  are  evaluated.
The implemented  software  package  is  freely  available  as  open  source on GitHub.
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1. Introduction

In the last decades, dozens if not hundreds of chromatogra-
phy simulators must have been developed at academic institutions
and in industry, applying different mathematical methods and pro-
gramming languages. The partial differential equations are most
often solved using the method of lines, discretizing the spatial
coordinate, for example, by finite volumes, or weighted residual
methods. Accuracy of the simulation results is usually evaluated
by comparing solutions on computational grids with increasing
numbers of elements. This way, the approximation order of the
mathematical algorithm can be assessed. However, correctness of
the simulation code can only be checked by comparing the results
with reference solutions that have been computed with a differ-
ent code, ideally based on a fundamentally different mathematical
algorithm for solving the model equations. For this purpose, we
present algorithms and software for computing reference solu-
tions of the general rate model (GRM) with arbitrary precision and
mathematically proven error bounds. The methods are based on
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numerical inverse Laplace transform and, hence, limited to lin-
ear binding models. Both quasi-stationary and dynamic binding
models are supported. The inlet concentration profiles are treated
in a most general way using piecewise cubic polynomials. Arbi-
trary precision arithmetics are applied for minimizing numerical
roundoff errors, and several convergence acceleration techniques
are evaluated for speeding up the computations.

Sometimes the full solution of the GRM is not required, but only
the first moments of the chromatogram need to be known. In prin-
ciple, these moments can be calculated from the chromatogram by
numerical integration routines. However, once an analytical GRM
solution in the Laplace domain is at hand, this can be used for
computing the moments much more efficiently.

Based on this approach, we have developed algorithms and
software for computing highly accurate moments of arbitrary
order. Algorithmic differentiation is applied for obviating the rather
tedious and error-prone manual derivation of the required deriva-
tives. In contrast to analytically derived formulas of the first
moments, the numerical algorithms can be applied to a much wider
class of inlet concentration profiles, namely piecewise cubic poly-
nomials.

All presented algorithms are implemented in the soft-
ware package CADET-semi-analytic which is freely available
as open source on GitHub: https://github.com/modsim/
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CADET-semi-analytic. The CADET core simulator, which is based
on finite volumes, and CADET-semi-analytic are validated against
each other. Several numerical examples are given that are com-
putationally highly demanding and demonstrate the potential and
feasibility of our approach to compute truly arbitrary precision
solutions and arbitrary order moments. However, the same meth-
ods can of course also be applied with much relaxed error bounds
for quickly calculating reference solutions with less correct digits.

2. General rate model

The GRM is the most comprehensive model of mass transfer
in column liquid chromatography, when only the axial coordinate
in the column and the radial coordinate in the beads are con-
sidered (Gu, 1995; Guiochon et al., 2006; Schmidt-Traub et al.,
2012; Felinger and Guiochon, 2004). The GRM describes trans-
port of solute molecules through the interstitial column volume
by convective flow, band broadening caused by axial dispersion,
mass transfer resistance through a stagnant film around the beads,
pore (and surface) diffusion in the porous beads (Ma  et al., 1996;
Schneider and Smith, 1968b; Miyabe, 2007), and adsorption to the
inner bead surfaces.

Consider a single chemical component in a column of length
L > 0 filled with spherical beads of radius rp � L. The mass balance
in the interstitial column volume is described by
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Here, c : [0,  ∞)  × [0,  L] → R
≥0 denotes the concentration in the

interstitial column volume, cp : [0,  ∞)  × [0,  L] × [0,  rp] → R
≥0 the

liquid phase concentration in the beads, kf the film diffusion coef-
ficient, Dax the dispersion coefficient, u the interstitial velocity,
and ˇc = εc/(1 − εc) the column phase ratio, where εc is the column
porosity (ratio of interstitial volume to total column volume).

In the liquid phase of the porous beads the mass balance is given
by
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where q : [0,  ∞)  × [0,  L] × [0,  rp] → R
≥0 denotes the solid phase

concentration in the beads, Dp the effective diffusion coefficient in
the beads, Ds the surface diffusion coefficient, and ˇp = εp/(1 − εp)
the particle phase ratio, where εp is the particle porosity (ratio of
pore volume to total bead volume). The GRM is used with both
quasi-stationary (Eq. (3)) and dynamic (Eq. (4)) linear binding
models. Nonlinear binding models, such as the Langmuir model
(Langmuir, 1916), are not applicable in this study, as they lead to
convolution integrals or other analytically non-solvable equations
in the Laplace transformed equations.

0 = kacp − kdq, (3)

∂q

∂t
= kacp − kdq. (4)

The following boundary conditions are imposed for all t ∈ (0, ∞)
and z ∈ [0, L]:
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Here, cin : [0,  ∞)  → R
≥0 denotes the inlet concentration pro-

file. Eqs. (5) and (6) are referred to as the Danckwerts boundary
conditions (Danckwerts, 1953). The following initial conditions are
applied for all z ∈ [0, L] and r ∈ [0, rp]:

c(0, z) = 0, cp(0,  z, r) = 0, q(0, z, r) = 0. (9)

3. Laplace domain solutions

Recently, analytical solutions of the GRM with Danckwerts
boundary conditions and quasi-stationary (Qamar et al., 2014) as
well as dynamic (Miyabe, 2014) linear binding models have been
obtained in Laplace domain. In the following, we present a uni-
fied derivation which is valid for both the quasi-stationary and the
dynamic case, along the lines of Qamar et al. (2014).

3.1. Common parts

First, those parts of the analytical solution in the Laplace domain
are derived, that are common to the quasi-stationary and dynamic
binding models. We  start by taking the Laplace transform in time
t of all state variables c, cp, and q to obtain c, cp, and q, respec-
tively. For the interstitial concentration c, the transformed variable
c : [0,  ∞)  × [0,  L] is defined by Eq. (10) (Davies, 2002):

c(s, z) :=
∫ ∞

0

e−stc(t, z) dt, s ≥ 0. (10)

Using the initial conditions Eq. (9) the Laplace transform of the
model equations Eqs. (1) and (2) for s ≥ 0 reads
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We  presume that the solution of the general rate model Eqs. (1)–(9)
is continuously differentiable with bounded derivative and solu-
tion, which allows to differentiate under the integral sign and
justifies the Laplace transforms above. The boundary condition at
the bead center Eq. (8) has the Laplace transform

∂cp

∂r
( · , · , 0) = 0 (13)

and for the boundary condition between porous beads and inter-
stitial column volume Eq. (7) we get
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From here on, the solution of the two  cases differs slightly.

3.2. Quasi-stationary case

Applying the Laplace transform to the quasi-stationary binding
model Eq. (3) results in

0 = kacp − kdq. (15)

https://github.com/modsim/CADET-semi-analytic
https://github.com/modsim/CADET-semi-analytic
https://github.com/modsim/CADET-semi-analytic


Download	English	Version:

https://daneshyari.com/en/article/172093

Download	Persian	Version:

https://daneshyari.com/article/172093

Daneshyari.com

https://daneshyari.com/en/article/172093
https://daneshyari.com/article/172093
https://daneshyari.com/

