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a  b  s  t  r  a  c  t

This paper  presents  a design  framework  to modify  the  bifurcation  characteristics  and  stability  of  high-
dimensional,  nonlinear,  chemical  processes  within  specified  operating  regions.  Portions  of solution
branches  are  stabilized  and  oscillatory  process  dynamics  in  the  vicinity  of Hopf  bifurcation  points  (HBPs)
are  attenuated.  A  new  optimization  algorithm  is introduced  to  circumvent  the  limitations  of  traditional
washout  filters  for feedback  control.  This  controller  is  used  to  operate  a high-dimensional,  nitroxide-
mediated,  radical  polymerization  (NMRP)  in  a continuous-stirred-tank  reactor  (CSTR).  The algorithm
adjusts  the  eigenvalues  of  the  model  Jacobian  matrix  to relocate  the  HBPs.  It is shown  to  permit  flexible
modifications  of  the  bifurcation  characteristics,  providing  acceptable  performance  for  set-point  tracking
and  disturbance  rejection,  and  stabilizing  solution  branches  in specified  regions.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In nonlinear chemical systems, interesting and troublesome
nonlinear dynamics arise routinely in the vicinity of Hopf bifur-
cation points (HBPs), which are often associated with exothermic
processes (Ray and Villa, 2000), diffusion limitations such as gel
effects in polymerization reactors (Schmidt and Ray, 1981), or
substrate inhibition in bioreactors (Lee et al., 1979, 1980). These
nonlinear dynamics include, but are not limited to, undesirable
process oscillations associated with HBPs. Ray and co-workers
addressed interesting dynamic behaviors and oscillations both the-
oretically and experimentally in research studies involving the
polymerization of ethylene, methylmethacrylate, vinyl acetate, and
styrene in CSTRs (Hamer et al., 1981; Ray and Villa, 2000; Pinto,
1995; Schmidt et al., 1984; Schmidt and Ray, 1981; Teymour and
Ray, 1989, 1992a, 1992b). Most of the nonlinear structures produce
unstable oscillations with stable operations confined to narrow
regions (Pinto, 1995).

In fact, these oscillations occasionally occur under traditional
static-state feedback and/or adaptive controls. Even worse, local
instability and complex dynamical behavior sometimes result
from controlled systems (Chen et al., 2000) due to process-model
mismatch and undesirable locations of HBPs. In these situations,
one or more poles of the closed-loop transfer function move across
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the stability boundary, leading to unstable operation and even
oscillations (Hassouneh et al., 2004).

The development of methods for modifying the bifurcation char-
acteristics of nonlinear chemical processes has been challenging
(Ji, 2001; Verduzco and Alvarez, 2006). These methods gain impor-
tance when the stability margin (distance from the HBP) is small.
Thus far, bifurcation controls have been implemented in experi-
mental systems or tested by numerical simulations for engineering
systems (Brandt and Chen, 1997; Chen and Yu, 2005; Wang et al.,
2007; Yu and Chen, 2004). In chemical engineering, Chang and Chen
(1984) extended linear control theories and utilized conventional
PID controllers to stabilize set-points in substrate-inhibition biore-
actors (CSTRs), modeled with two ordinary differential equations.
However, state feedback and/or adaptive controls often move oper-
ating points on steady-state branches, even altering the shapes
of these branches. These can counter control efforts to achieve
improved equilibrium structures (Levine, 2011) and preferable
operating points.

As the theoretical basis of nonlinear analysis, the normal form
has been expressed to analyze and modify bifurcations. Recently,
Krener and Kang developed an approach to implement bifurca-
tion control for systems having a single uncontrollable mode using
normal forms and invariants (Kang, 2000; Krener et al., 2004). How-
ever, for bifurcation control, the deviations of normal forms from
their central manifolds involve at least two  vector fields to be sim-
plified simultaneously, as compared with dynamic systems without
control (Chen et al., 2000). Besides, both changes of coordinates and
state feedbacks are necessary, which makes its current application
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Nomenclature

Greek letters
�HR heat of polymerization reaction
�Fin,tl maximum off-set tolerance of Fin,tl
� residence time (s)
� the transformation matrix for Ã and Â
�i the kdeactivation eigenvalue of A
�p, �q two arbitrary eigenvalues of the coordinates-

changed system Jacobian Â
� V−1AV
�̃ similar matrix of Ã
�M density of the feedsteam (kg L−1)
�c density of cooling water (kg L−1)

Notations
A the Jacobian of the original system
Â the Jacobian of the augmented system
Ã the Jacobian of the coordinates-changed system(

AT
)

k
the kth column of AT

Akd
pre-exponential factor of deactivation reaction
(L mol−1 s−1)

Akd,nv
nominal pre-exponential factor for deactivation

reaction (L mol−1 s−1)
AU

kd
upper bound of pre-exponential factor of deactiva-

tion reaction (L mol−1 s−1)
AL

kd
lower bound of pre-exponential factor of deactiva-

tion reaction (L mol−1 s−1)
Ah heat transfer area (m2)
B input matrix
B̂ B̂ ∈ R

n×n and has Bw in the kth column
bk the kth element of Bw
Cpen penalty factor
Cp,M heat capacity of feedstream (J kg−1 K−1)
Cp,c heat capacity of cooling water (J kg−1 K−1)
Dpert diameter of eigenvalue perturbation
d reciprocal of the filter time constant
D dimer
D• dimer radical
Fc,in cooling water flow rate (L/s)
Fin feed stream flow rate (L/s)
F ODEs for state variables x, ẋ  = F (x, u) , F : R

n ×
R

l → R
n

ki rate constant for thermal initiation (L mol−1 s−1)
kdim rate constant for Mayo dimerization (L mol−1 s−1)
kp rate constant for propagation (L mol−1 s−1)
ktd rate constant for termination by disproportionation

(L mol−1 s−1)
ktc rate constant for termination by combination

(L mol−1 s−1)
ktrm rate constant for monomer transfer (L mol−1 s−1)
ktrd rate constant for dimer transfer (L mol−1 s−1)
kh3

rate constant for rate enhancement (L mol−1 s−1)
kdecomp rate constant for alkoxyamine decomposition (L/s)
ka rate constant for activation of dormant species (L/s)
kd rate constant for deactivation of dormant species

(L mol−1 s−1)
ka2 rate constant for activation of the NOE species (L/s)
kd2 rate constant for deactivation of the NOE species

(L mol−1 s−1)
MONx monomeric alkoxyamine
NOE nitroxyl ether
NOx

• stable nitroxyl radical

Pr
• and Pn

• propagating living radical with r and n monomer
units

PrONx and PnONx dead polymer with r and n monomer units
R• primary radical
t time (s)
T reactor temperature (K)
T0 feed stream temperature (K)
T0,nom nominal feed stream temperature (K)
Tc cooling water temperature (K)
Tc,0 cooling jacket feed temperature (K)
u input vector
v reference input vector
V the similarity transformation matrix of A
Ṽ the similarity transformation matrix of Ã
V reactor volume (L)
Vc cooling jacket volume (L)
w controller parameter
x state variables, x ∈ R

n

ẋ x differentiated by time
y output of the washout filter
Y0 0th moment of the living-radical distribution
Y1 1st moment of the living-radical distribution
Y2 2nd moment of the living-radical distribution
Z0 0th moment of the dormant species distribution
Z1 1st moment of the dormant species distribution
Z2 2nd moment of the dormant species distribution
Q0 0th moment of the dead-polymer distribution
Q1 1st moment of the dead-polymer distribution
Q2 2nd moment of the dead-polymer distribution

Acronyms
h.o.t higher-order terms
MWD  molecular-weight distribution
NMRP nitroxide-mediated radical polymerization
ODEs ordinary differential equations
PDI polydispersity index

limited only for theoretic systems, such as Van der Pol oscillators,
the three-dimensional Rössler system, and the Lorenz system.

Abed and co-workers (Abed et al., 1992; Abed, 1988a, 1988b;
Abed and Fu, 1986, 1987; Lee and Abed, 1991; Wang and Abed,
1995) were among the first to analyze bifurcation control using
washout-filter-aided dynamic controllers where the desired oper-
ating points are uncertain (Hassouneh et al., 2004). Although
washout filters were used successfully in many control applica-
tions, no systematic ways of choosing their constants and control
parameters existed. To overcome this, Mönnigmann and Marquardt
(2002) introduced an approach to calculate directly the controller
parameters of a washout filter, introducing a HBP for a poly-
merization process having a single uncontrollable mode (process
Jacobian matrix having only one eigenvalue with a positive real
part). Their approach required that the input matrix be invertible,
with the number of manipulated inputs equal to the number of
state variables – significantly limiting its practical application. Sub-
sequently, they stabilized a multi-input, parameterized nonlinear
system (Laiou et al., 2004) by introducing a Hopf bifurcation using
washout-filter-aided controllers – allowing the replacement of a
pair of unstable complex conjugate eigenvalues. But, to replace both
single- and dual-unstable eigenvalues, four conditions (C1 to C4)
must be satisfied to insure nontrivial solutions of the w vector of
the washout-filter-aided controller (defined in Eq. (8)). To illustrate
their approach, an exothermic, irreversible reaction, A → B, which
satisfies their four conditions, is used.
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