
Prediction and assimilation of surf-zone processes using a Bayesian network
Part II: Inverse models

Nathaniel G. Plant a,⁎, K. Todd Holland b

a U.S. Geological Survey, 600 4th St. S., St. Petersburg, FL 33701, USA
b Naval Research Laboratory, Stennis Space Center, MS 39529, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 9 October 2009
Received in revised form 31 October 2010
Accepted 4 November 2010

Keywords:
Wave height
Bathymetry
Field data
Duck94
Parameter estimation

A Bayesian networkmodel has been developed to simulate a relatively simple problem ofwave propagation in
the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse
modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given
limited wave-height and depth information from an onshore location. The inverse method is extended to
allow data assimilation using observational inputs that are not compatible with deterministic solutions of the
problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of
wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is
essential to reduce prediction errors. In many practical situations, this information could be provided from a
shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated
inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model
domain. Application of the Bayesian networkmodel to new field data demonstrated significant predictive skill
(R2=0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse
results include uncertainty estimates that were shown to be most accurate when given uncertainty in the
inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly
estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the
model parameters not only showed an offshore wave height dependence consistent with results of previous
studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in
the model parameters.

Published by Elsevier B.V.

1. Introduction

Large spatial and temporal variability in waves, water levels,
currents, and bathymetry characterizes the nearshore coastal envi-
ronment. These variables are typically strongly coupled, as can be
illustrated using a variety of numerical models. Therefore, accurate
predictions of any of these variables require accurate measurements
of boundary-condition data, including details of the incident wave
spectrum, water level variations, and bathymetry. Numerous studies
demonstrate significant model prediction skill when accurate data are
available, e.g., SWAN (Simulating Waves Nearshore, Booij et al., 1999;
Ris et al., 1999), Delft-3D (Lesser et al., 2004; Reniers et al., 2007), or
ADCIRC (Westerink et al., 2008). A modern challenge that must be
overcome to use these advanced models for both practical applica-
tions as well as for scientific study is to obtain appropriate initial and
boundary data from often sparse, noisy, or disparate data sources. In
essence, the model capabilities often exceed the quality of the data

used to force the models. Numerous approaches to this problem have
been implemented using, for instance, spatial interpolation (Plant
et al., 2009) or formal data-assimilation methods (e.g., Feddersen
et al., 2004). Researchers of global ocean circulation andweather have
recognized that data assimilation is a required component of their
research and operations (e.g., Goerss, 2009). This recognition has been
slower among those studying the shallow regions near the coastline.
Here, we demonstrate a new methodology that is appropriate for
assimilating data and models that are available in the nearshore
environment.

In our companion paper (Plant and Holland, 2011), we presented
a Bayesian network approach for making wave-height predictions
and associated prediction errors across the surf zone where the
network acted as a forward model. The Bayesian network approx-
imates the joint probability between system variables (e.g., wave
height, period, direction, and water depth) that were expected to be
correlated. A specific system variable can be estimated using
constraints on related variables provided by observations or other
data. The approach assumed that both the model and the data were
potentially inaccurate. Specifically, data inaccuracies (including
measurement errors and spatial under-sampling) and model
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inaccuracies were captured in parameter errors. The Bayesian
network was trained through the assimilation of realistic simulations
provided by a 1-dimensional (cross-shore) deterministic numerical
model.When new data inputs and input errors were supplied tomake
a prediction, the Bayesian approach made skillful predictions of both
measured wave heights and prediction uncertainty.

Another capability of the Bayesian network approach, not described
in the companion paper, is that it may be applied in an inverse sense.
That is, it can be used to efficiently assimilate observational data (e.g.,
wave heights) in the interior of a model domain in order to update
knowledge of the boundary conditions. The utility of this sort of
assimilation is threefold. First, updated boundary conditions might be
intrinsically useful. For instance, assimilation methods have been used
to estimate nearshore bathymetry (Piotrowski and Dugan, 2002; Plant
et al., 2008; Stockdon and Holman, 2000), which could be used
independently of the network for navigation, safety, or validation of
morphologic evolution models. Also, more highly resolved or accurate
boundary conditions estimated using the Bayesian approach could be
used to drive related, more detailed numerical models. Second, since
the updated information in a Bayesian network can propagate to both
boundary conditions and to variables within the model interior,
observations can be used to optimally update all modeled variables
simultaneously. The Bayesian network will make a prediction that
appropriately weights the new information with respect to its prior
predictions. Thus, if new data are very accurate, the Bayesian prediction
will match all the data; whereas, if the data are very inaccurate or
inconsistent, the prediction will be unaffected by the assimilated data.
Third, the Bayesian network can be extended to assimilate variables
that are not typically used as either input or output within detailed,
numerical nearshore process models. For instance, observations of
sandbar positions are available at some coastal locations (Lippmann
and Holman, 1989; Plant et al., 1999; Ruessink et al., 2003b). Sandbars
certainly indicate something about the bathymetry (it is shallow at the
bar crest) and can have a direct impact on wave energy dissipation, but
since the numerical depth of the bar is not known, sandbar position
cannot be used directly as a numerical wave model input. In contrast,
assimilation of sandbar position into the Bayesian network is
straightforward. Other examples of observations not typically assim-
ilated include surf zone width and the intensity of wave breaking.

In this paper, we investigate the inverse and assimilation
capability of a Bayesian network developed from the 1-dimensional
(1-D) process model described in detail in the companion paper. In
Section 2 (this paper, Models), we briefly describe the previous work
and introduce an extension that includes three additional variables:
inner and outer sandbar positions and the normalized wave height
(i.e., the local ratio of wave height to water depth, which is related to
the intensity of wave breaking). These variables are selected because
they can be estimated via remote sensing. In Section 3 (this paper,
Applications), we test the ability of both the original and the extended
Bayesian networks to estimate boundary conditions and assimilate
data. As with the forward modeling (companion paper), we test both
the ability to make accurate predictions and to estimate prediction
uncertainty. Discussion of the implication of the analysis results and of
sensitivity to input errors is presented in Section 4. Conclusions are
presented in Section 5.

2. Models

A Bayesian network is based on multi-dimensional application of
Bayes Rule:

p Fi jOj

� �
= p Oj jFi

� �
p Fið Þ= p Oj

� �
; ð1Þ

where the left side of Eq. (1) is the updated probability of a particular
forecast, Fi, given a particular set of observations, Oj. The first term on

the right-hand side of Eq. (1) is the inverse of the left side and is the
likelihood of the observations if the forecast is known. The next term
on the right side is the prior probability of each forecast. This is what is
known about the problem before new data are available. The last term
is a normalization factor to account for the total likelihood of the
observations. Each of the terms on the right-hand side of Eq. (1) must
be learned from model simulations or a calibration data set or both.

2.1. Nearshore model

In the companion paper, we have already described the wave
model (Thornton and Guza, 1983). Here, it is treated as a general
nonlinear model:

Fi xkð Þ = Hkf gi = funct: h0;h1;…;hk;H0;α0; T ;γ;Bf gi
� �

; ð2Þ

where h is the water depth and H is the root mean square (rms) wave
height. All variables with subscript k are spatially varying. Additional
model inputs are the peak wave period (T), wave direction at the
seaward boundary (α0) and parameterized values for the critical
wave breaking criteria (γ) and a wave energy dissipation efficiency
term (B). All of the inputs can be considered random variables, since
even the model parameters must be estimated from data (Apotsos
et al., 2008; Ruessink et al., 2003a).

2.2. Bayesian network formulation

A Bayesian network was constructed to represent the wave model
(Eq. (2)). The dimensionality of the problem was reduced by
considering only three spatial locations (the offshore boundary and
two interior locations). The original Bayesian network presented in
Part I tracked the following forecast and observation values:

Fi = h0;H0;h1;H1;h2;H2; T ;α0;γ;Bf gi
and

Oj = ĥ0; Ĥ0; ĥ1; Ĥ1; Ĥ2; ĥ2; T̂; α̂0; γ̂; B̂
n o

j
:

ð3aÞ

The spatial locations are given by the subscripts (0 for the offshore
boundary, 1 for the intermediate position, and 2 nearshore, Fig. 1).
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Fig. 1. Spatially varying data extracted at three locations (vertical lines) used to drive
Bayesian network predictions. Data include simulated wave height (thin dashed green
line), bathymetry (solid blue line), normalized wave height (thick dashed black line),
and observed bar positions (large black dots).
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