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a  b  s  t  r  a  c  t

Optimization  problems  often  have  a subset  of parameters  whose  values  are  not  known  exactly  or  have
yet  to  be  realized.  Nominal  solutions  to models  under  uncertainty  can  be infeasible  or  yield  overly  opti-
mistic  objective  function  values  given  the  actual  parameter  realizations.  Worst-case  robust  optimization
guarantees  feasibility  but yields  overly  conservative  objective  function  values.  The use  of probabilistic
guarantees  greatly  improves  the performance  of  robust  counterpart  optimization.  We  present  new  a  pri-
ori  and  a posteriori  probabilistic  bounds  which  improve  upon  existing  methods  applied  to models  with
uncertain  parameters  whose  possible  realizations  are  bounded  and  subject  to unspecified  probability
distributions.  We  also  provide  new  a priori  and  a  posteriori  bounds  which,  for  the first  time,  permit  robust
counterpart  optimization  of models  with  parameters  whose  means  are  only  known  to lie  within  some
range  of values.  The  utility  of  the  bounds  is demonstrated  through  computational  case  studies  involving
a  mixed-integer  linear  optimization  problem  and  a linear  multiperiod  planning  problem.  These  bounds
reduce  the  conservatism,  improve  the  performance,  and  augment  the  applicability  of robust  counterpart
optimization.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The parameters of applied mathematical models often have multiple possible values which they can achieve due to limited information
or measurement error. The solutions and objective function values produced from optimizing models with uncertain parameters can vary
greatly based on which values the uncertain parameters realize. One method of handling uncertain parameters is to guarantee feasibility
of the constraints for all possible parameter points contained within deterministically defined parameter spaces, called uncertainty sets;
the corresponding optimization model is known as a robust counterpart. For bounded uncertainty, that is, for the case where upper and
lower bounds on each uncertain parameter are known, Soyster (1973) formulated the so-called “worst-case” robust counterpart, where
each constraint’s uncertainty set is defined to include all possible parameter points; the probability that parameters would realize values
rendering an optimal solution infeasible is zero. El Ghaoui and Lebret (1997) applied robust optimization methods to uncertain least-squares
optimization problems, and El Ghaoui et al. (1998) solved uncertain semidefinite optimization problems.

Less conservative solutions can also be obtained for models with bounded or unbounded uncertain parameters, where the uncertainty
sets can be defined with a corresponding probability of constraint violation greater than zero. For bounded uncertainty in linear optimization
models (LPs), Ben-Tal and Nemirovski (2000) proposed the interval + ellipsoidal uncertainty set and derived a method to provide an
upper bound on constraint violation given the size of the uncertainty set. Bertsimas and Sim (2004) proposed and characterized the
interval + polyhedral uncertainty set, which yielded a linear robust counterpart. The robust counterpart optimization framework was
extended to mixed-integer linear optimization models (MILPs) by Floudas and coworkers (Janak et al., 2007; Lin et al., 2004; Verderame
and Floudas, 2009a,b) with parameters subject to uncertainty with known or unknown distributions, including unbounded probability
distributions.
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In a traditional robust counterpart optimization framework, the quality of an optimal solution to the robust counterpart relies heavily
on a priori methods that define uncertainty sets which are guaranteed to satisfy a particular upper bound on the probability of constraint
violation; a tighter probabilistic bound would allow the imposition of a smaller uncertainty set with the same guarantee of feasibility and
can drastically improve the objective function values. In other words, a tighter probabilistic upper bound on constraint violation leads to less
conservative solutions. Both Ben-Tal and Nemirovski (2000) and Bertsimas and Sim (2004) derived a priori methods that provided an upper
bound on the probability of constraint violation based on uncertainty set size for interval + ellipsoidal and interval + polyhedral sets, respec-
tively. Kang et al. (2013) utilized distribution-dependent bounds with the interval + polyhedral uncertainty set. Li et al. (2011) extended
these bounds to apply to other uncertainty sets so that a variety of a priori bounds were available for box, ellipsoidal, interval + ellipsoidal,
polyhedral, and interval + polyhedral uncertainty sets. An alternative approach is to characterize the probability of constraint violation of a
particular solution, that is, to obtain a probabilistic guarantee a posteriori (Kang et al., 2013; Li and Floudas, 2014; Li et al., 2012; Paschalidis
et al., 2008), which would yield a tighter bound than an a priori bound of equivalent structure. An a posteriori bound can be incorporated
into the robust counterpart, permitting feasibility only when the bound is met, as an alternative to an uncertainty set, though this yields
a highly nonconvex optimization problem (Li and Floudas, 2014). Li and Floudas (2014) proposed an iterative method which yields better
solutions than those obtained from the traditional robust counterpart optimization framework (i.e., defining uncertainty sets via a priori
bounds), by converging them towards the tighter results given by a posteriori bounds. Utilizing tight a priori and a posteriori bounds with
this iterative method can provide drastically improved solutions when compared to the worst-case approach, as well as the traditional
one-pass robust counterpart optimization framework.

We present fundamental theoretical results on new a priori and a posteriori bounds on the probability of constraint violation which
improve upon existing methods. Situations for which one or more of the new bounds are applicable include (i) bounded, symmetric or
asymmetric uncertain parameters with known means and unknown probability distributions, and (ii) bounded uncertain parameters with
limited information on their means. With the proposed a priori and a posteriori bounds, robust counterpart optimization can be applied to
models with parameters matching the latter case for the first time. The new a priori bounds yield smaller uncertainty sets while guaranteeing
the same probability of constraint violation when compared with existing methods. A new a posteriori bound for symmetric, unspecified
probability distributions can yield lower probabilities of constraint violation for the same robust solution. An a posteriori bound given
uncertain parameters with limited information on their means is also provided. These methods can provide greatly improved objective
function values, both when used within a traditional robust counterpart framework and when applied to the a priori–a posteriori iterative
algorithm of Li and Floudas (2014).

2. Background

The scope of this work includes uncertain parameters which participate linearly or are coefficients of variables participating linearly
in a constraint or objective function. Given continuous variables x and integer variables y, consider constraint i with nonlinear function
fi(x, y):

fi(x, y) +
∑
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aikxk +
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bi�yi� +
∑
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pim ≤ 0. (1)

Relevant to this work is the case where the exact value of some or all of the parameters aik, bi�, and pim are unknown. Without loss of
generality, constraint (1) can be reformulated as:

fi(x, y) + ti ≤ 0
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pim ≤ 0. (2)

The same type of reformulation can be applied to an objective function under uncertainty. Thus, we will assume that all uncertain constraints
only involve linearly participating variables which are continuous or integer. The typical presentation of robust optimization goes further
and assumes that the entire model is an LP or MILP. We  present the background section under this assumption so as to maintain consistency.
The study of uncertainty in parameters that participate nonlinearly in the objective function or constraints is beyond the scope of this paper
and will be the subject of future work.

The general form of a LP or MILP under uncertainty is as follows:

max
x,y
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(3)
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