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Nearshore wave and flowmodel results are shown to exhibit a strong sensitivity to the resolution of the input
bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-
resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity
of model-predicted wave height and flow to variations in bathymetric resolution had different
characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability
associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution
of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow
sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising
implication of these results is that the interpolation and smoothing of bathymetric data could be optimized
differently for the wave and flow models. We show that errors between observed and modeled flow and
wave heights are well predicted by comparing model simulation results using progressively filtered
bathymetry to results from the highest resolution simulation. The damage done by over smoothing or
inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to
quantify prediction errors will be useful for supporting future data assimilation efforts that require this
information.

Published by Elsevier B.V.

1. Introduction

Nearshore process models are capable of predicting both wave
evolution across the nearshore region as well as the associated wave
and wind driven nearshore currents (Booij et al., 1999; Reniers et al.,
2007). Required input to this modeling approach includes estimates of
water levels, wind, and a spectral description of thewaves on the open
boundaries as well as the bathymetry at all modeled locations. Our
ability to describe these inputs is only as good as the technology used
to measure and interpret them. For example, bathymetry is typically
surveyed at discrete spatial locations and times as the data density is
limited by the amount of time required to conduct the survey or to
time periods where marine weather conditions permit survey
operations. Bathymetric data will tend to be sparsely sampled in
either space or time, and, therefore, it must be interpolated in order to
fully populate model domains.

Furthermore, there is a potential (if not certain)mismatch between
the scales that we wish to resolve with the nearshore process model
(e.g., beach cusps, crescentic bars, and rip channels) and the scales that
are resolved by the survey data (which may be higher or lower
resolution than required, Plant et al., 2002). This mismatch is usually
addressed through numerical treatment of the data (interpolation) or

themodel (adjust grid resolution) or both. It is not clear whichmethod
or combination ofmethods yields the bestmodel predictions. And, it is
not clear that the optimal bathymetry for a particular wave model is
also the optimal bathymetry for a corresponding flow model.

If we focus on the problem of providing bathymetry to a nearshore
process model, then we would like to be able to objectively specify an
optimal survey design to appropriately support a specific model
resolution. This assumes that the important scales of variability have
been selected by the modeler or model forecast user. Different users
would likely have different requirements concerning the resolved
scales in the model predictions. For instance, for public safety it might
be important to resolve rip currents at hourly intervals with spacing of
tens to hundreds of meters while for land-use management it might
be important to resolve shoreline variations over years and decades
spanning distances of tens to hundreds of kilometers. Using the model
design as a constraint, the question becomes “what are the smallest
spatial scales that a bathymetric survey needs to resolve in order to
support an accurate model prediction?”

The answer to this question depends on properties of the environ-
ment as well as the model. For instance, if the spatial resolution of a
particular model implementation is 10 m-by-10 m (cross-shore and
alongshore dimensions), then the model will not resolve features with
length scales shorter than 20 m-by-20 m (the Nyquist wave length). If
such short scales exist in the real environment, they are assumed to be
unimportant and they might need to be filtered out of the bathymetry
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that is used by the model to prevent aliasing that could lead to model
errors. For instance, aliasing can cause short-scale beach cusps to
masquerade as larger-scale rhythmic features (Plant et al., 2002). Even if
the observations are sufficiently dense to resolve short scale features,
there may be model errors if the processes associated with the short
features are not accurately parameterized. As an example, the swash
flow (andmany other details) associatedwith short-scale beach cusps is
not resolved by typical wave-averaged model schemes. Therefore, the
beach cusps might need to be filtered out of the bathymetry unless
processes associatedwith unresolved features are added to themodel in
the form of new parameterizations.

Our present hypothesis is that model errors can be minimized
through some amount of bathymetric filtering and that the optimal
amount of filtering should depend on the range of spatial scales that
are accurately parameterized. Fig. 1 provides a qualitative picture of
the effect that short scale variations and smoothing might have on
model error. The modeled quantity of interest could be either wave
height or flow velocity sampled at one or more locations. Consider a
model-data comparison for the situation where the model grid
resolution is held constant. Imagine that we have collected bathy-
metric data that are at much higher resolution than the model grid
such that we could directly use surveyed depths at all locations within
the model domain, if so desired. Assuming that short scale (compared
to the model grid resolution) variations exist in the bathymetric data,
we should more appropriately apply some sort of filtering to remove
potential aliasing. We can apply a linear filter that takes the form

Zfilt xi; yi; tið Þ = ∑
j
aij Zobs xj; yj; tj

� �
; ð1Þ

where Zobs is the observed bathymetry at discrete locations xj, yj, tj,
and Zfilt is the filtered bathymetry evaluated on the model domain (xi,
yi, ti). The filter weights take the functional form:

aij = funct: j xj−xi
Lx

j + j yj−yi
Ly

j + j yj−ti
Lt

j� �
; ð2Þ

with smoothing scale parameters Lx, Ly, and Lt, where the subscripts
x, y, and t correspond to cross-shore, alongshore, and time coordi-
nates, respectively. The larger the smoothing scale, the more the
output is filtered.

If the filter scale is much smaller than the distance between survey
observations, then only one observation will contribute to the
summation in Eq. (1). If the filter scale is also much smaller than the
model grid spacing, then the model's bathymetry will include aliasing
errors. We label model errors due to aliasing as type-I errors, which
result if not enough filtering has been applied to the data. Type-I
errors may also result if there is no aliasing, but, instead, the input
bathymetry resolves short-scale features and associated processes
that are not treated by the model (e.g., swash over beach cusps is not

treated by wave-averaged models). As the filter scale is increased,
type-I errors are removed and we expect that the overall model
performance will be improved. At this point, we achieve the smallest
model errors (type-II errors) because the bathymetry is well matched
to the scales that are resolved by the model. In this case, type-II errors
reflect intrinsic model deficiencies that are not related to the
bathymetry errors. If further smoothing does not affect model errors,
then (1) there may be no significant bathymetric variations at these
scales or (2) the model is intrinsically insensitive to these variations.
At some point, the smoothing begins to remove the features that are
important to the model prediction (type-III errors). For instance,
sandbars or rip channels might be removed with large cross-shore or
alongshore filter scales. Finally, all interesting features are removed at
very large filter scales; the bathymetry is replaced by a planar or even
horizontal surface, and additional filtering does not inflict much
additional damage (type-IV errors).

An understanding of the sensitivity of model prediction errors can
be used to identify optimal sampling strategies. Survey data that yield
only type-II errors are desired. If the upper limit of the smoothing
scale for this error type is known, then survey data need to be sampled
to support this amount of filtering. This requires samples spaced about
one-half the optimal smoothing scale (Plant et al., 2002).

It is not always possible to design an optimal survey. Then, the
relevant question becomes “what damage does a particular survey
resolution do to the model predictions?” Again, we have the option to
filter the short scale bathymetric features in order to reduce model
prediction errors, but important features may not be resolved.
Without additional information, the best we can do is to estimate
the errors that have crept into the problem. We would like to know
what type of errors (types I–IV) will be encountered, and we would
like to be able to quantify the error magnitudes. This knowledge can
be used, for instance, in a data assimilation strategy. A typical
application would be to find an optimal combination of model
predictions and sparse in situ observations. For example, if both
modeled and observed nearshore currents are available, the observa-
tions can be used to update the model prediction via a Kalman filter
(Kalman, 1960). Consider assimilation of modeled and observed
velocities (Umodel and Uobserved):

Uupdate =Umodel + K Uobserved−Umodelð Þ
K =

σ2
model

σ2
observed + σ

2
model

:
ð3Þ

Here σ describes model and observation errors. If the model error
is relatively large, then K is large, and the updated velocity, Uupdate, is
dominated by the observations. The important point is that both
model and observation errors are required known in this type of
optimal assimilation.

The objective of this paper is to estimate the sensitivity of
nearshore hydrodynamic model errors to progressive filtering of the
input bathymetry. We are treating the smoothness of the bathymetry
as a control variable, much like other studies investigate the
sensitivity of model results to the choice of parameterization or
parameter value. We estimate errors in prediction of bothwave height
and mean current vectors and will show observed response to
bathymetric smoothing that is consistent with Fig. 1. In Section 2
(Approach) we describe Duck94 (Birkemeier and Thornton, 1994) data
collection , data processing, and Delft3D (Lesser et al., 2004) model
implementation. In Section 3 (Results) we describe the model data
error comparisons evaluated at a number of smoothing scales for
several representative cases. We find that the flow and wave height
errors have different sensitivity to smoothing and that these errors are
predictable. Finally, in section 4 (Discussion and Conclusions) we
comment on the implications that the results have on modeling,
surveying, and assimilation. The conclusion is that the analysis
approach presented here can be used to implement optimal survey

Fig. 1. Idealized model error response to bathymetric smoothing. The dashed curve
describes errors due to comparing a model with high-resolution bathymetry to a model
with filtered bathymetry. The dotted line describes error between observations and a
model with filtered bathymetry. The error regimes I–IV are described in the text.
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